Find out a series solution for differential equation, Mathematics

Assignment Help:

Find out a series solution for the following differential equation about x0 = 0

y′′ + y = 0.

 Solution

Note that in this case p(x)=1 and therefore every point is an ordinary point. We will be searching for a solution in the form,

156_Find out a series solution for differential equation.png

We will require plugging this in our differential equation therefore we'll require to get a couple of derivatives.

2337_Find out a series solution for differential equation1.png

Recall by the power series review section on power series which we can start these at n=0 if we require to, however it's almost all time best to start them where we have now.  If this turns out that this would have been simple to start them at n=0 we can simply fix this up while the time comes around.

Therefore, plug these in our differential equation. Doing it gives,

1373_Find out a series solution for differential equation2.png

The subsequent step is to combine everything in a particular series. To do that needs which we get both series starting at similar point and that the exponent on the x be similar in both series.

We will all the time start this through getting the exponent on the x to be similar. This is usually best to find the exponent to be an n. The second series previously has the correct exponent and the first series will require to be shifted down through 2 in order to find the exponent up to an n.  If you don't recall how to do it take a rapid look at the first review section where we did some of these kinds of problems.

Shifting the first power series provides us,

1219_Find out a series solution for differential equation3.png

Remember that in the method of the shift we also found both series starting at similar place. It won't always occur, but when it does we'll take this. We can here add up the two series. It gives us subsequent,

1756_Find out a series solution for differential equation4.png

Here recalling the fact from the power series review section we identify that if we contain a power series which is zero for all x as it is, then all the coefficients should have been zero to start with. It gives us the subsequent,

 (n + 2) (n + 1)an+2 +an =0,                               n = 0,1,2,......

These are termed as the recurrence relation and remember that we contain the values of n for that it should be true. We will all the time want to contain the values of n for that the recurrence relation is true as they won't all the time start at n = 0 as this did in this case.

Here let's recall what we were after in the initial place. We needed to get a series solution to the differential equation. So as to do this we required to find out the values of the an's. We are almost to the point where we can do this. The recurrence relation has two dissimilar a='s in this therefore we can't just solve this for an and find a formula which will work for all n.  We can though, use this to determine what all but two of the a='s are.

To do that we first solve the recurrence relation for the an which has the largest subscript.  Doing it gives as,

an+2 = (- (an))/((n + 2) (n + 1))                          n = 0,1,2,......

 

Currently, at this point we just require to start plugging in several values of n and notice what occurs,

837_Find out a series solution for differential equation5.png

See that at each step we all the time plugged back into the earlier answer hence when the subscript was even we could all the time write thean in terms of a0 and while the coefficient was odd we could all the time write the an in terms of a1. Also see that, during this case, we were capable to get a general formula for an's with even coefficients and an's with odd coefficients. It won't always be probable to do.

Now here is one more thing to notice. The formulas which we developed were simply for k=1,2,... though, in this case again, they will as well work for k=0. Again, it is something that won't forever work, but does now.

Do not get excited regarding to the fact which we don't know what a0 and a1 are.  As you will notice, we actually require these to be in the problem to find the accurate solution.

Here that we've found formulas for the an's let's find a solution. The first thing which we'll do is write out the solution along with a couple of the an's plugged into.

1641_Find out a series solution for differential equation6.png

The subsequent step is to collect all the terms along with similar coefficient in them and then factor out that coefficient.

2435_Find out a series solution for differential equation7.png

In the previous step we also used the fact which we knew what the common formula was to write both portions like a power series.


Related Discussions:- Find out a series solution for differential equation

Computed the total cost y of a ride which was x miles, A ride in a taxicab ...

A ride in a taxicab costs $1.25 for the first mile and $1.15 for each additional mile. Which of the following could be used to computed the total cost y of a ride which was x miles

Prove that the height of the center of the balloon, A round balloon of radi...

A round balloon of radius 'a' subtends an angle θ at the eye of the observer while the angle of elevation of its centre is Φ.Prove that the height of the center of the balloon is a

Complex fractions, A small airplane used 5and2over3 gallons of fuel to fly ...

A small airplane used 5and2over3 gallons of fuel to fly a 2 hour trip.how many gallons were used each hour

Comparison test for improper integrals - integration, Comparison Test for I...

Comparison Test for Improper Integrals Here now that we've seen how to actually calculate improper integrals we should to address one more topic about them.  Frequently we ar

How to multiplying monomials, How to Multiplying Monomials? To multiply...

How to Multiplying Monomials? To multiply monomials: Step 1: Multiply the coefficients. Step 2: Multiply the like variables by adding their exponents. Step 3: Multiply ans

Logic, INSTRUCTIONS: Construct a regular proof to derive the conclusion of ...

INSTRUCTIONS: Construct a regular proof to derive the conclusion of the following argument: 1. H v (~T > R) 2. Hv (E > F) 3. ~T v E 4. ~H & D / R v F INSTRUCTIONS: Con

3, LAST COST METHOD

LAST COST METHOD

Hypothesis test, Describe, in your own words, the following terms and give ...

Describe, in your own words, the following terms and give an example of each. Your examples are not to be those given in the lecture notes, or provided in the textbook. By the en

Probability, joey asked 30 randomly selected students if they drank milk, j...

joey asked 30 randomly selected students if they drank milk, juice, or bottled water with their lunch. He found that 9 drank milk, 16 drank juice, and 5 drank bottled water. If the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd