Find dispersion relation for free electron, Electrical Engineering

Assignment Help:

Find Dispersion Relation for Free Electron

Question: Find the dispersion relation for a free electron, and, thus, observe the relation between its rest mass and effective mass.

Solution: For a free electron, the electron momentum is  p =m0v = hk. Thus, E=m0V2/2=p2/ (2m0) = h2k2/(2m0). Therefore, the dispersion relation, i.e., E-k relation is parabolic. Hence, mx = h2/∂2Ε/∂K2=m0. This is a very interesting relation that says states that for a free electron, the rest mass and effective mass are one and similar, which is because of the parabolic band structure. Several materials have non-parabolic E-k relation, and, so they have quite different rest mass and effective mass for electrons.

Note: the effective mass may become a function of energy, for severely non-parabolic band structures, however, near the minima of the conduction band and towards the maxima of the valence band, the band structure can be taken to be parabolic, and, thus, an effective mass, which is independent of energy, may be obtained.

  • Thus, the effective mass is an inverse function of the curvature of the E-k diagram: weak curvature gives large mass, and strong curvature gives small mass.
  • Note that in general, the effective mass is a tensor quantity, however, for parabolic bands, it is a constant.
  • Another interesting feature is that the curvature d2E/dk2 is positive at the conduction band minima, however, it is negative at the valence band maxima.
  • Thus, the electrons near the top of the valence band have negative effective mass.
  • Valence band electrons with negative charge and negative mass move in an electric field in the same direction as holes with positive charge and positive mass.
  • Thus, the charge transport in the valence band can be fully accounted for by considering hole motion alone.
  • The electron and hole effective masses are denoted by m*n and m*p  respectively.

 

Table: the effective mass for electrons and holes (Χ m0, where m0 is the rest mass for electrons)311_Find Dispersion Relation for Free Electron.png


Related Discussions:- Find dispersion relation for free electron

Basic macroeconomic policy trilemma for open economies, Q. Explain th...

Q. Explain the basic macroeconomic policy trilemma for open economies. Answer: Of three goals mainly countries share - independence in financial policy and stability in t

Determine the initial value and final value of the current, Given the frequ...

Given the frequency-domain response of an RL circuit to be determine the initial value and the final value of the current by using the initial-value and final-value theorem

Ujt as relaxation oscillator, UJT as relaxation oscillator: The UJT re...

UJT as relaxation oscillator: The UJT relaxation oscillator is shown in fig. it consist of a UJT and a capacitor C which is charged through a variable resistance R when VBB is

Components in a microprocessor, What are the basic components in a Micropro...

What are the basic components in a Microprocessor? 1) Address lines to refer to the address of a block 2) Data lines for data transmit 3) IC chips 4 processing data

Realize various dividers in the schematic representation, Q. Counters are u...

Q. Counters are used to realize various dividers in the schematic representation of the digital clock shown in Figure. The blocks labeled "logic array" are logic gate combinations

Find the current by means of mesh-current analysis, For the network shown i...

For the network shown in Figure, find the current delivered by the 10-V source and the voltage across the 3- resistor by means of mesh-current analysis.

Merits and demerits of fixed bias with emitter resistor, Merits: The ci...

Merits: The circuit has the trend to stabilize operating point against changes in temperature and β-value. Demerits: In this type of circuit, to keep I C  independent o

The electrical circuit, Normal 0 false false false EN-U...

Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4

Simulate a diode application circuit using multisim ewb, a. Simulate a diod...

a. Simulate a diode application circuit using Multisim EWB.  Compare calculated and simulated results Each student must choose one of the following circuits from question 1 (Ref

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd