Find all the real solutions to cubic equation, Mathematics

Assignment Help:

Find all the real solutions to cubic equation x^3 + 4x^2 - 10 =0. Use the cubic equation x^3 + 4x^2 - 10 =0 and perform the following call to the bisection method [0, 1, 30]

Use the fixed point iteration to find the fixed point(s) for the function g(x) = 1 + x - x^2/3

Find all the real solutions to cubic equation x^3 +4x^2-10=0. Use the cubic equation x^3 + 4x^2 - 10 =0 and perform the following call to the regulaFalsi [0, 1, 30]

Use newton's method to find the three roots of a cubic polynomial f(x) = 4x^3 - 15x^2 + 17x-6. Determine the Newton-raphson iteration formula g[x] = x - (f(x)/f'(x)) that is used. Show details of the computation for the starting value p0 = 3.

Use the secant method to find the three roots of cubic polynomial f[x]=4x^3 - 16x^2 + 17x - 4. Determine the secant iterative formula g[x] = x - (f[x]/f'[x]) that is used. Show details of the computation for the starting value p0=3 and p1=2.8

Use appropiate Lagrange interpolating polynomials of degrees one, two, and three to approximate each of the following:

A) f(8.4) if f(8.1)= 16.94410, f(8.3)=17.56492, f(8.6)=18.50515, and f(8.7)=18.82091

B)f(1/3) if f(-0.75)= -0.07181250, f(-0.5) = -0.02475000, f(-0.025) = 0.33493750, and f(0)=18.82091

Use the newton forward divided-difference formula is used to approximate f(0.3) given the following data

X        0.0     0.2     0.4     0.6

F(x)  15.0   21.0   30.0   51.0

Suppose it is discovered that f(0.4) was understand by 10 and f(0.6) was overstated by 5. By what amount should the approximation to f(0.3) be changed?

Using the error formulas

|f(x)-P1(x)| ≤ 1/8 max (f(x))h2, linear interpolation

|f(x)-P2(x)| ≤ 1/9√3 max (f(x))h3, quadratic interpolation

A)  what is an appropriate size for the interpolation table for the function tan x on the interval [0,1] in order that linear interpolation produce an error no larger than 0.5 x 10^6

B)   Answer A)

A) Using taylor series expansions derive the O(h^2) central difference approximation

F'(x)= (f(x+h)-f(x-h))/2h

B)  using richardson extrapolation and taylor series expansions derive the O (h4) derivative approximation

F'(x)= (-f(x+2h)+8f(x+h)-8f(x-h)+f(x-2h))/12h

Consider the richardson table for derivatives in the form step size table

Step size                       table

H                                  D(0,0)

H/2                               D(1,0)        D(1,1)

H/2^2                           D(2,0)        D(2,1)        D(2,2)

H/2^3                           D(3,0)        D(3,1)        D(2,3)        D(3,3)

.

.

Where the central difference formula

(h)   = (f(x+h)-f(x-h)) /2h

Is used to construct the first column using

D(n,0)= (h/2^n)

And the following formula

D(n,m)= (4^mD(n,m-1)-D(n-1,m-1))/4^m-1 (use for hand calculations)

D(n,m-1)+((D(n,m-1)-D(n-1,m-1)/(4^m-1)) (use for programming)

Is used, for n≥m, to obtain entries in other columns in terms of the entry to their left and the entry above this entry. For example, D(2,1) is obtained in terms of D(2,0) and D(1,0) and D(3,2) is obtained in terms of D(3,1) and D(2,1)

A) construct the table for the derivative of tan x at x=0.5. Choose an initial step size of h=1 and calculate 4 rows by hand using a calculator

B) use maple procedure richardson in file richardson.txt to calculate 6 rows of the richardson extrapolation table.

----------------------------------------------------------------------------------------------

# lip.txt:

#Symbolic calculation of LIP

#(Lagrange interpolating polynomial)

#

#Arguments

#

#xp   list [x0,x1,....,xn] of nodes

#yp   list[y0,y1,.....,yn] of function values at nodes

#x     symbolic variable for the polynomial

#

#lists xp amd yp have n+1 elements and begin at subscript 1

#so the interpolating polynomial is of degree n

----------------------------------------------------------------------------------------------

lip := proc(xp,yp,x)

         local n,s,p,k,j;

         N := nops(xp) -1; #nops(xp) gives number of elements in xp

         S := 0;

         For k from 0 to n do

                   P := yp[k+1];

                   For j from 0 to n do

                            If j<>k then

                                     P := p*(x-xp[j+1])/(xp[k+1]-xp[j+1]);

                            Fi;

                   Od;

                   S := s=p;

         Od;

         Return s;

End proc:


Related Discussions:- Find all the real solutions to cubic equation

Example of graphical technique of linear equations, Explain the Graphical T...

Explain the Graphical Technique of Linear Equations by using this figure.

The alternative hypothesis, The alternative hypothesis When formulatin...

The alternative hypothesis When formulating a null hypothesis we also consider the fact that the belief may be found to be untrue thus we will refuse it.  Therefore we formula

Evaluate the inverse function , Question: a. What is the inverse of f (...

Question: a. What is the inverse of f (x)? b. Graph the inverse function from part (a). c. Rewrite the inverse function from part (a) in exponential form. d. Evaluate

Logarithm, The function A(t) = 5(0.7)^t was used to define the amount A in ...

The function A(t) = 5(0.7)^t was used to define the amount A in milliliters of a drug in the bloodstream t hours after the drug was ingested. Determine algebraically the time it wi

Thinking mathematically-why learn mathematics, THINKING MATHEMATICALLY :  ...

THINKING MATHEMATICALLY :  Have you ever thought of what mental processes you are going through when you are solving a mathematical problem? Why don't you try the following proble

How to converting fractions to decimals explain with example, How to Conver...

How to Converting Fractions to Decimals explain with example? To convert fractions to decimals, divide the numerator by the denominator. The quotient is the decimal. Ex

Geometry, Can two lines contain a given point

Can two lines contain a given point

This year he is 651/4 inches tall how many inches did grow, Last year Jonat...

Last year Jonathan was 603/4 inches tall. This year he is 651/4 inches tall. How many inches did he grow? Subtract to find outthe difference in heights. You will need to borro

Prove that r is an equivalence relation, 1. Let S be the set of all nonzero...

1. Let S be the set of all nonzero real numbers. That is, S = R - {0}. Consider the relation R on S given by xRy iff xy > 0. (a) Prove that R is an equivalence relation on S, an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd