Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Calculate one-sided limits, Calculate the value of the following limits. ...

Calculate the value of the following limits. Solution From the graph of this function illustrated below, We can illustrate that both of the one-sided limits suffer

How many packets of the first type did she purchase, The manager of a garde...

The manager of a garden store ordered two different types of marigold seeds for her display. The first type cost her $1 per packet and the second kinds cost $1.26 per packet. How m

Wants to Join as expert, Hi.. This is dinesh kumar I just joined experminds...

Hi.. This is dinesh kumar I just joined experminds.com , i wamt to receive assignment in maths and want to complete students assignment within time. Please help me how i can become

first and third quartiles, From the data given below calculate the value o...

From the data given below calculate the value of first and third quartiles, second and ninth deciles and forty-fifth and fifty-seventh percentiles.

Shares and dividends, I need to make an assignment on this topic what shoul...

I need to make an assignment on this topic what should i write in it

Objectives of addition and subtraction, Objectives After going throu...

Objectives After going through this unit, you should be able to 1. explain the processes involved ih addition and subtraction; 2. plan and execute activities that woul

Find the probability distribution of x, If a pair of dice is thrown and X d...

If a pair of dice is thrown and X denotes the sum of the numbers on them. Find the probability distribution of X.Also find the expectation of X.     SOLUTION:    In a singl

Calculus questions, Show all your work. 80% of your score is for correct ju...

Show all your work. 80% of your score is for correct justified answers; 20% is for correctly and clearly demonstrating why. For the graphing problems, use www.desmos.com/calculator

Calculate the number-average and weight-average molar mass, Three mixtures ...

Three mixtures were prepared with very narrow molar mass distribution polyisoprenesamples with molar masses of 8000, 25,000, and 100,000 as indicated below. (a) Equal numbers of

Series solutions to differential equations, Before searching at series solu...

Before searching at series solutions to a differential equation we will initially require to do a cursory review of power series. So, a power series is a series in the form, .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd