Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Help, Two sessions of swimming lessons were held at a pool. In the first se...

Two sessions of swimming lessons were held at a pool. In the first session 40 students attended. Of these 40 students 60% were girls. How many girls attended the first session of s

Money, how do you add 1,ooo and 100?

how do you add 1,ooo and 100?

Example on discrete mathematics, Suppose that at some future time every tel...

Suppose that at some future time every telephone in the world is assigned a number that contains a country code, 1 to 3 digits long, that is, of the form X, XX , XXX or followed

Time series and analysis, Time Series and Analysis It is the statistic...

Time Series and Analysis It is the statistical or mathematical analysis on past data arranged in a periodic sequence. Decision making and planning in an organization includes

The equation of the tangent, Consider the function f(x) = 2x 2 + 1. Find ...

Consider the function f(x) = 2x 2 + 1. Find the equation of the tangent to the graph of f(x) at x = 2. [NOTE: when calculating f'(2), use first principles.

Solution to a differential equation, A solution to a differential equation ...

A solution to a differential equation at an interval α Illustration 1:   Show that y(x) = x -3/2 is a solution to 4x 2 y′′ + 12xy′ + 3 y = 0 for x > 0. Solution : We'll

Find the maxima or minima and green theorem, 1) find the maxima and minima ...

1) find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2)compute the work done by the force field F(x,y,z) = x^2I + y j +y k in moving

Find probabilities for the standard normal distribution, Q. Find Probabilit...

Q. Find Probabilities for the Standard Normal Distribution? Ans. Suppose the history teacher decides to distribute the final grades of his class with a normal distribution

Triangles, In a triangle ABC, D &E is a are points on AB & AC ,if the one s...

In a triangle ABC, D &E is a are points on AB & AC ,if the one side of a triangle is 4cm & another side is 5 cm find that the ar(triangleABC):ar(BCDE)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd