Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

How much does kristen have left after the money is taken out, Kristen earns...

Kristen earns $550 each week after taxes. She deposits 10% of her income in a savings account and 7% in a retirement fund. How much does Kristen have left after the money is taken

How many gumdrops, Will has a bag of gumdrops. If he eats 2 of his gumdrops...

Will has a bag of gumdrops. If he eats 2 of his gumdrops, he will have among 2 and 6 of them left. Which of the subsequent represents how many gumdrops, x, were originally in his b

Algebria, solve and graph the solution set 7x-4 > 5x + 0

solve and graph the solution set 7x-4 > 5x + 0

Mass-Spring-Damper -- Underdamped System, us consider the following mass-sp...

us consider the following mass-spring-damper system: md2xdt2+cdxdt+kx=0 with m=5 kg as the mass of the body, k=1.6N/m as the spring constant and two different values of c.

Solving Trig Equations, How would you solve the equation: 1+ sin(theta)= 2 ...

How would you solve the equation: 1+ sin(theta)= 2 cos^2(theta)?

The hurwiz method, The Hurwiz method Hurwiz method was the concept of c...

The Hurwiz method Hurwiz method was the concept of coefficient of optimism or pessimism introduced by L. Hurwicz. The decision maker takes into account both the minimum and max

The cost of renting a bike at the local bike is y = 2x + 2, The cost of re...

The cost of renting a bike at the local bike shop can be represented through the equation y = 2x + 2, where y is the total cost and x is the number of hours the bike is rented. Whi

Permutation and combination, The remainder when 5^99 is divided by 13 Ans) ...

The remainder when 5^99 is divided by 13 Ans) 8 is the remainder.

Linda bought 35 yards of fencing how much did she spend, Linda bought 35 ya...

Linda bought 35 yards of fencing at $4.88 a yard. How much did she spend? To multiply decimals, multiply generally, count the number of decimal places in the problem, then us

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd