Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Statistics, the median of a continuous frequency distribution is 21.if each...

the median of a continuous frequency distribution is 21.if each observation is increased by 5. find the new median

Solve the form x2 + bx - c, Solve the form x 2 + bx - c ? This tutori...

Solve the form x 2 + bx - c ? This tutorial will help you factor quadratics that look something like this: x 2 + 11x - 12 (No lead coefficient; positive middle coeffic

Integers, Explain with the help of number line (-6)+(+5)

Explain with the help of number line (-6)+(+5)

Permutation, Permutation - It is an order arrangement of items whether...

Permutation - It is an order arrangement of items whether the order must be strictly observed Illustration Assume x, y and z be any of three items. Arrange these in all

Holistic marketing , Necessity of holistic marketing or importance of holis...

Necessity of holistic marketing or importance of holistic marketing

Higher-order derivatives, Higher-Order Derivatives It can be se...

Higher-Order Derivatives It can be seen that the derivative of a function is also a function. Considering f'x as a function of x, we can take the derivative

Equations, At a bakery the cost of 30 experts is 45$. Write an equation tha...

At a bakery the cost of 30 experts is 45$. Write an equation that shows the cost of 45 cookies

Comparison test - sequences and series, Comparison Test Assume that we...

Comparison Test Assume that we have two types of series ∑a n and ∑b n with a n , b n ≥ 0 for all n and a n ≤ b n for all n.  Then, A.  If ∑b n is convergent then t

Right angled triangle, In proving relation of trigonometric ratios we becam...

In proving relation of trigonometric ratios we became confused that what should we do next, so to complete any question quickly what should we do?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd