Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Find the generating function, Find the generating function for the number o...

Find the generating function for the number of r-combinations of {3.a, 5.b, 2.c}          Ans:  Terms sequence is given as r-combinations of {3.a, 5.b, 2.c}. This can be writte

Shoppers` stop, 3. How are Indian customers visiting Shoppers’ Stop any dif...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

Matrics, #question what is input and output analysis

#question what is input and output analysis

Fractions, If i worked 7 1/3 hours and planted 11 trees how many hours did ...

If i worked 7 1/3 hours and planted 11 trees how many hours did it take to plant each tree?

Area with parametric equations - polar coordinates, Area with Parametric Eq...

Area with Parametric Equations In this section we will find out a formula for ascertaining the area under a parametric curve specified by the parametric equations, x = f (t)

Linear equation, tens digit of a 2-digit number is twice its unit digit. If...

tens digit of a 2-digit number is twice its unit digit. If the sum of the digit is 12, find the number.

Proof of: limq -0 sinq/q = 1 trig limits, Proof of: lim q →0 sin q...

Proof of: lim q →0 sin q / q = 1 This proofs of given limit uses the Squeeze Theorem. Though, getting things set up to utilize the Squeeze Theorem can be a somewha

Proportions, How would you solve this question? 4/5 = 8/x+2

How would you solve this question? 4/5 = 8/x+2

Implement immutable data type rational for rational number, Implement an im...

Implement an immutable data type Rational for rational numbers that supports addition, subtraction, multiplication and division. public class Rational Ration

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd