Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Technique of teching, What is a review technique? What are its advantages a...

What is a review technique? What are its advantages and disadvantages?

Canada australia eire spain, Before independence, Bangladesh was called Cey...

Before independence, Bangladesh was called Ceylon East Pakistan Bhutan Bangalore Which of the following countries does not have a monarch as head of state? Canada Australia Eire

What is the maximum number calories which consume from fats, Josephine is o...

Josephine is on an 1,800 calorie per day diet. She tries to remain her intake of fat to no more than 30% of her overall calories. Based on an 1,800 calorie a day diet, what is the

Help, can you help me with math

can you help me with math

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

How to converting scientific notation to standard notation , How to Convert...

How to Converting Scientific Notation to Standard Notation ? To change a number in scientific notation to standard notation, move the decimal point the same number of places as

Prove the equality of axiom choice, (1) Prove that Zorn's lemma is equivale...

(1) Prove that Zorn's lemma is equivalent to axiom of choice. (2) Use Zorn's Lemma to prove the existence of E.

How many can speak both english and russian, In a group of 1000 people, the...

In a group of 1000 people, there are 750 people will speak English and 400 people will speak Russian. How many may speak English only? How many will speak Russian? How many can spe

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd