Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Determine if r is equivalence relation or a partial ordering, Let R be the ...

Let R be the relation on the set of ordered pairs of positive integers such that ((a, b), (c, d)) ∈ R if and only if ad = bc.  Determine whether R is an equivalence relation or a p

Bisection method and the newton method, 1. Write two m-files, one for the b...

1. Write two m-files, one for the bisection method and another for Newton's method. 2. Using both the Bisection method and the Newton method answer the following: Include th

Find the probability , 1.  What is the probability that the two beverages w...

1.  What is the probability that the two beverages will be of the same kind? 2.  What is the probability that the two beverages will be different? 3.  What is the probability

Integration, ((1/x^1/2-(x-1)^1/2)+(1/(5-3(x-1)^2)^1/2)

((1/x^1/2-(x-1)^1/2)+(1/(5-3(x-1)^2)^1/2)

#t, show that a*0=a

show that a*0=a

Calculate the area of rectangle , Calculate the area of RECTANGLE ? Th...

Calculate the area of RECTANGLE ? The area of a rectangle is the amount of space taken up by a rectangle, which is a two-dimensional shape. You find the area (A) of a recta

Permatuation and combination problem, A,B,C are natural numbers and are in ...

A,B,C are natural numbers and are in arithmetic progressions and a+b+c=21.then find the possible values for a,b,c Solution) a+b+c=21 a+c=2b 3b=21 b=7 a can be 1,2,3,4,5,6 c c

Control a liner interpolation between original mesh, Use your keyboard to c...

Use your keyboard to control a linear interpolation between the original mesh and its planar target shape a. Each vertex vi has its original 3D coordinates pi and 2D coordinates

Equal groupings -categories of multiplication, Equal groupings - when we...

Equal groupings - when we want to find how many objects there are in several equal-sized sets. (e.g., if there are 3 baskets, each with 4 bananas, 4 oranges and 4 apples, respec

Pre-operational stage-development learning maths, Pre-operational Stage : ...

Pre-operational Stage :  This period of a child's cognitive development usually begins at the age of 2, and lasts until about the age of 6. Thus, it usually coincides with the pre

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd