Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Find the volume of ice cream cone, An ice-cream cone has a hemispherical to...

An ice-cream cone has a hemispherical top. If the height of the cone is 9 cm and base radius is 2.5 cm, find the volume of ice cream cone.

Explain id amortisation is proper impairment will not arise, If depreciatio...

If depreciation/amortisation is done properly, impairment adjustments will not arise.   Required: Do you agree with the above statement? Critically and fully explain your

Write down the system of differential equations, Write down the system of d...

Write down the system of differential equations for mass system and the spring above. Solution To assist us out let's first take a rapid look at a situation wherein both of

Draw grouped frequency tables, Q. Draw Grouped Frequency Tables? Ans. ...

Q. Draw Grouped Frequency Tables? Ans. Grouped frequency tables are often used when there are many different values. In these tables, the values are grouped into classes

Analysis, Ask question #Minimum 1Let X be a topological space, let p ? X, a...

Ask question #Minimum 1Let X be a topological space, let p ? X, and let F and ? be C-valued functions on X that are continuous at p. Then the functions F + ?, F?, |F|, ReF and ImF

What is the probability that the integer chosen is divisible, An integer i...

An integer is chosen at random from the first two hundreds digit. What is the probability that the integer chosen is divisible by 6 or 8.                    (Ans : 1/4 ) Ans:

How much does it car cost her per year, Ashley's car insurance costs her $1...

Ashley's car insurance costs her $115 per month. How much does it cost her per year? Multiply $115 by 12 because there are 12 months in a year; $115 × $12 = $1,380 per year.

Determine the mean of given question, Q . Mrs. Cooper asked her math class ...

Q . Mrs. Cooper asked her math class to keep track of their own grade. Michael, one of the students, lost his assignments, but he remembered the grades of 6 out of 8 assignments:

Learning to count in maths, Here we learn: 1) Discussed what counting me...

Here we learn: 1) Discussed what counting means, and stressed that it is not the ability to recite number names. 2) Talked about the need for a child to understand several pr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd