Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Determine the size of belt, On a piece of machinery, the centers of two pul...

On a piece of machinery, the centers of two pulleys are 3 feet apart, and the radius of each pulley is 6 inches. Determine the size of belt (in feet) is required to wrap around bot

Lower than average, A local police precinct has seen a recent enhance in th...

A local police precinct has seen a recent enhance in the number of complaints filed regarding how officers are interacting with the public. Before addressing the issue, the command

Solving a quadratic equation, In polynomials you have seen expressi...

In polynomials you have seen expressions of the form x 2 + 3x - 4. Also we know that when an expression is equated to zero or some other expression, we cal

Integration-mathematics, Integration Integration is the reversal of di...

Integration Integration is the reversal of differentiation An integral can either be indefinite while it has no numerical value or may definite while have specific numerical v

Logarithms, We know that 2 4 = 16 and also that 2 is referred to as ...

We know that 2 4 = 16 and also that 2 is referred to as the base, 4 as the index or power or the exponent. The same if expressed in terms of logarithms would be log 2

Matrices, suppose you a business owner and selling cloth. the following rep...

suppose you a business owner and selling cloth. the following represents the number of items sold and the cost for each item. use matrix operation to determine the total revenue ov

Integration by parts -integration techniques, Integration by Parts -Integra...

Integration by Parts -Integration Techniques Let's start off along with this section with a couple of integrals that we should previously be able to do to get us started. Fir

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd