Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Personal assistance needed, I have an original finding on the subject of pr...

I have an original finding on the subject of prime distribution and would like expert help in my endeavors. I have written a paper describing everything in detail and demonstration

Calculus level 2, the first question should be done using the website given...

the first question should be done using the website given (www.desmos.com/calculator )and another good example to explain using the graph ( https://www.desmos.com/calculator/ydimzr

HELP, WHAT TWO SIX DIDGIT NUMBERS CAN YOU ADD 984,357

WHAT TWO SIX DIDGIT NUMBERS CAN YOU ADD 984,357

Logorithms, log base 5 (3-2x) + log base 5 (2+x) = 1

log base 5 (3-2x) + log base 5 (2+x) = 1

Find the values of a and b, The midpoint of the line joining (2a, 4) and (...

The midpoint of the line joining (2a, 4) and (-2, 3b) is (1, 2a +1).Find the values of a & b. (Ans: a = 2, b = 2) Ans :   A(2a, 4)           P(1, 2a + 1)                 B(-2,

External forces, It is the catch all force. If there are some other forces ...

It is the catch all force. If there are some other forces which we decide we need to act on our object we lump them in now and call this good. We classically call F(t) the forcing

Rational numbers, Although the set of integers caters to a larger aud...

Although the set of integers caters to a larger audience, it is inadequate. This inadequacy has led to the formulation of Rational numbers. Rational numbers are of

PROBLEM SOLVING, The perimeter of a rectangular swimming pool is 60m. The l...

The perimeter of a rectangular swimming pool is 60m. The length of the pool is 4 m more than the width. What is the width of the pool?

Equivalent Fractions and Decimals, write each fraction as a decimal .round ...

write each fraction as a decimal .round to the nearest hundredth if necessary (1-4) (14-21)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd