Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Briefly explain markov chains, Question 1 An experiment succeeds twice as ...

Question 1 An experiment succeeds twice as often as it fails. Find the chance that in the next six trials there will be at least four successes Question 2 An insurance compan

Graph and algebraic methods , To answer each question, use the function t(r...

To answer each question, use the function t(r) = d , where t is the time in hours, d is the distance in miles, and r is the rate in miles per hour. a. Sydney drives 10 mi at a c

Why did the two dice game become more difficult?, The following exercises m...

The following exercises may help you to look more closely at the activities done above. E1) Why did the two dice game become more difficult? E2) Do you find the activities in

Illustration of rank correlation coefficient, Illustration of Rank Correlat...

Illustration of Rank Correlation Coefficient Sometimes numerical data such refers to the quantifiable variables may be described after which a rank correlation coefficient may

Partial derivatives - set theory, Partial Derivatives Partial derivati...

Partial Derivatives Partial derivatives are used while we want to investigate the effect of one independent variable on dependent variable. For illustration, the revenues of a

Complementary addition-word problems related to subtraction, Complementary ...

Complementary addition -what number how many things should be added to one number or group to get the other. (e.g., a classroom can seat 50 children, and 20 children are already s

Determine the function f ( x ) , Determine the function f ( x ) .       ...

Determine the function f ( x ) .             f ′ ( x )= 4x 3 - 9 + 2 sin x + 7e x , f (0) = 15 Solution The first step is to integrate to fine out the most general pos

Calculate what number of workers should be hired, You are given the followi...

You are given the following information about the amount your company can produce per day given the number of workers it hires. Numbers of Workers Quanti

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd