Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Find relative extrema f ( x ) = x2 on [-2, Recognizes the absolute extrema...

Recognizes the absolute extrema & relative extrema for the given function.  f ( x ) = x 2        on                  [-2, 2] Solution Following is the graph for this fun

Ellipse, different types of ellipse

different types of ellipse

Quotient rule, Quotient Rule : If the two functions f(x) & g(x) are differ...

Quotient Rule : If the two functions f(x) & g(x) are differentiable (that means the derivative exist) then the quotient is differentiable and,

What is the probability that the card is a queen, Five cards - the ten, jac...

Five cards - the ten, jack, queen, king and ace, are well shuffled with their face downwards. One card is then picked up at random. (i)  What is the probability that the card is

Mensuration, if area of a rectangle is 27 sqmtr and it perimeter is 24 m fi...

if area of a rectangle is 27 sqmtr and it perimeter is 24 m find the length and breath#

Calculate the number-average and weight-average molar mass, Three mixtures ...

Three mixtures were prepared with very narrow molar mass distribution polyisoprenesamples with molar masses of 8000, 25,000, and 100,000 as indicated below. (a) Equal numbers of

In sequence to remain the pole perpendicular to the ground, A cable is atta...

A cable is attached to a pole 24 ft above ground and fastened to a stake 10 ft from the base of the pole. In sequence to remain the pole perpendicular to the ground, how long is th

Correlation and regression, Correlation and Regression Correlation ...

Correlation and Regression Correlation CORRELATION is an important statistical concept which refers to association or interrelationship among variables. The reasons of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd