Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Co-prime positive integers, A group of 5 people are going to meet weekly at...

A group of 5 people are going to meet weekly at the library for 4 weeks. Every week, two people are selected at random to speak. Every person may speak in multiple weeks, but no pa

Ratio, how to do them?

how to do them?

Average function value of even and odd function, Average Function Value ...

Average Function Value The first application of integrals which we'll see is the average value of a function. The given fact tells us how to calculate this. Average Functi

how many of the original vectors, We have claimed that a randomly generate...

We have claimed that a randomly generated point lies on the equator of the sphere  independent of where we pick the North Pole.  To test this claim randomly generate ten  vectors i

Clique graph, Consider the clique graph below. a) How many subgraph...

Consider the clique graph below. a) How many subgraphs of G with 3 nodes are there?  b) How many of the subgraphs defined in part(a) are induced subgraphs?

Find the area of triangle, Find the area of TRIANGLE ? To find the area...

Find the area of TRIANGLE ? To find the area of a triangle, multiply the base (b) by the height (h), and divide the resulting number in half. In other words, area is. It is

What is geometry formula to estimate distance, Danielle requires knowing th...

Danielle requires knowing the distance around a basketball court. What geometry formula will she use? The perimeter of a rectangle is two times the length plus two times the wi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd