Fermats theorem, Mathematics

Assignment Help:

Fermat's Theorem

 If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

 Proof

It is a fairly easy proof.  We will suppose that f(x) has a relative maximum to do the proof.

 The proof for a relative minimum is nearly the same. Therefore, if we suppose that we have a relative maximum at x = c after that we know that f(c) ≥ f(x) for all x which are sufficiently close to x = c.

 Particularly for all h which are sufficiently close to zero may be positive or negative we must contain,

f(c) ≥ f(c + h)

or, with a little rewrite we should have,

f(c + h) - f(c) < 0                                             (1)

Now, here suppose that h > 0 and divide both sides of (1) with h. It provides,

(f(c + h) - f(c))/h < 0

Since we're assuming that h > 0 we can here take the right-hand limit of both sides of such.

= limh0¯  (f(c + h) - f(c))/h < limh0¯ 0 = 0

We are also assume that f′(c) exists and recall this if a general limit exists then this should be equal to both one-sided limits. We can so say that,

f′(c) = limh0¯  (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h < 0

If we place this together we have here demonstrated that, f′(c) ≤ 0 .

Fine, now let's turn things around and suppose that h < 0 provides,and divide both sides of (1) with h. It  gives

(f(c + h) - f(c))/h > 0

Keep in mind that as we're assuming h < 0 we will require to switch the inequality while we divide thorugh a negative number. We can here do a same argument as above to find that,

f′(c) = limh0 (f(c + h) - f(c))/h = limh0¯  (f(c + h) - f(c))/h >   limh0¯ 0 = 0

The difference now is that currently we're going to be considering at the left-hand limit as we're assuming that h < 0 . This argument illustrates that f′(c) ≥ 0 .

 We've now shown that

 f′(c) ≤ 0 and f′(c)  ≥ 0. So only way both of such can be true at similar time is to have f′(c) = 0 and it means that x = c must be a critical point.

 As considered above, if we suppose that f(x) has a relative minimum then the proof is nearly  the same and therefore isn't illustraten here. The major differences are simply several inequalities require to be switched.


Related Discussions:- Fermats theorem

Geometry, What is the better buy?a square pizza measuring 8 inches by 8inch...

What is the better buy?a square pizza measuring 8 inches by 8inches that cost $10 or a round pizza with a 9 inch diameter that also cost $10?

Ratios, a doctor sees 3 boys to 5 girls in one week . If he sees 40 boys in...

a doctor sees 3 boys to 5 girls in one week . If he sees 40 boys in one day then how many girls does he see that day

Inverse laplace transforms, Determining the Laplace transform of a function...

Determining the Laplace transform of a function is not terribly hard if we've found a table of transforms opposite us to use as we saw in the previous section. What we would want t

Determine the inverse transform, Determine the inverse transform of each of...

Determine the inverse transform of each of the subsequent. (a)    F(s) = (6/s) - (1/(s - 8)) + (4 /(s -3)) (b)   H(s) = (19/(s+2)) - (1/(3s - 5))  + (7/s 2 ) (c)    F(s) =

Evaluating a function, Evaluating a Function You evaluate a function by...

Evaluating a Function You evaluate a function by "plugging in a number". For example, to evaluate the function f(x) = 3x 2 + x -5 at x = 10, you plug in a 10 everywhere you

How much time does larry spend on his dog each day, Larry spends 3/4 hour t...

Larry spends 3/4 hour twice a day walking and playing with his dog. He also spends 1/6 hour twice a day feeding his dog. How much time does Larry spend on his dog each day? Add

Ratios, What is the ratio of the cone''s volume to the cylinder''s volume

What is the ratio of the cone''s volume to the cylinder''s volume

Shoppers` stop, 3. How are Indian customers visiting Shoppers’ Stop any dif...

3. How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries? 4. How should Shoppers’ Stop develop its demand forecasts?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd