Fault detection and isolation for lateral flight of an uav, Mechanical Engineering

Assignment Help:

Introduction  

Fault tolerance is very important for aircraft flight control.  The majority of the faults occur in the sensors and actuators onboard the aircraft.  Once a fault has occurred the aircraft could become uncontrollable and be dangerous to passengers and crew.  This assignment is to examine the effects of sensor faults on the lateral dynamics of an Unmanned Aerial Vehicle.

470_Fault Detection and Isolation for Lateral Flight of an UAV 1.png

Background  

Lateral Dynamics

The Lateral Dynamics of any aircraft are defined in terms of the Body-fixed velocities and  corresponding Earth-fixed orientation (see Figure 1).

Figure 1: Lateral Flight Dynamics

 In this particular case the velocities are roll rate (p) and yaw rate (r).  All other Body-fixed dynamics are regarded as constant (e.g. surge velocity) or zero.  The effects of these velocities on to the inertially fixed Earth-fixed axes are represented by the orientation of the aircraft. 

These are the roll angle (φ) and yaw angle (ψ).  In addition, the influence of sideslip on the aircraft is included in the form of the sideslip angle (β).  

The corresponding inputs to the lateral dynamics of the aircraft are the aileron deflection (δa) and the rudder deflection (δr).  The ailerons control the roll motion and the rudder controls the heading or yaw.  The Lateral Dynamics of an UAV can be represented by the following differential equations:

1692_Fault Detection and Isolation for Lateral Flight of an UAV.png

Here the translational velocities are measured in m/s, rotational velocities in rad/s and the angles in radians.  The constant value for the surge velocity is taken to be U0 = 30 m/s.

In addition to the flight dynamics, this aircraft representation also includes the dynamics of the aileron and rudder actuators.  Both actuators have a maximum amplitude deflection of 25 degrees and a maximum rate limit of 5 degrees/second.

Faults in Lateral Dynamics

The faults in the Lateral Dynamics of an aircraft can be either multiplicative or additive.  The multiplicative faults occur within the dynamics of the aircraft and can be caused by changes to the aircraft itself during flight.   These types of faults are not considered here.

Instead, additive faults caused by the sensors in the system will be the main focus of this assignment.  In particular faults that occur on the heading channel that are added to the sensed dynamics from the aircraft shall be the subject of this study.

Problem Specification  

The following stages are expected to be performed in this assignment:  

1.  Construct a continuous time simulation of the Lateral Dynamics of the UAV using zero initial conditions. 

2.  Simulate a suitable manoeuvre where changes in heading can be observed (e.g. zig-zag).

3.  Simulate three separate stepwise faults in the heading channel of magnitudes 2, 5 and 10 degrees.

4.  Simulate a separate driftwise fault in the heading channel.

5.  Analyze the effect of these separate faults.

6.  Using a suitable limit checking method, detect these faults in the system.

7.  Using a suitable fault diagnosis method, diagnose these faults.

8.  Repeat this investigation with simulated white noise of amplitude ±5degree included in the heading output of the system.

9.  Explain how the FDI system has to be altered to accommodate the existence of noise.

10. Comment on the influence of the faults and the FDI system on the Lateral Dynamics if a heading control system was employed.


Related Discussions:- Fault detection and isolation for lateral flight of an uav

Heat treating equipment, Heat Treating Equipment: The major equipment...

Heat Treating Equipment: The major equipment for heat treatment is furnace. There are two main categories of furnaces - batch and continuous. The furnace selection needs cons

Explain about napthenic acid corrosion, Q. Explain about Napthenic Acid Cor...

Q. Explain about Napthenic Acid Corrosion? Some crude oils contain napthenic acids, which, at elevated temperatures, may contribute to more active corrosion with or without the

Calculate the principal dimensions of a cone clutch, Calculate the principa...

Calculate the principal dimensions of a cone clutch faced with leather to transmit 30 KW at 750 r.p.m. from an electric motor to an air compressor. Draw a section front view of the

Electron beam welding(ebw )-effect of process parameters, EFFECT OF PROCESS...

EFFECT OF PROCESS PARAMETERS High voltage gives high velocities in the electron beams. The mutual repulsion effects in the constituent electrons will be less marked at high vel

Find out the friction force, Find out the friction force: The cord pas...

Find out the friction force: The cord passes over a massless and frictionless pulley, carrying a mass M 1 at one end and wrapped around a cylinder of mass M 2 which rolls on

#totto cycleitle.., for an otto cycle, compression ratio=8.5:1,air inlet=15...

for an otto cycle, compression ratio=8.5:1,air inlet=15degree celsius and pressure=101.3kpa, maximum cycle temperature= 1800degree celsius, what is temperature after compression,te

What are the uses of windmill, Windmills were traditionally used for proces...

Windmills were traditionally used for processing grains, later they started to be used for electricity production as well. Windmills can also be used to pump water.

Thermodynamics, define the first and second law of thermodynamics.

define the first and second law of thermodynamics.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd