Factorization of expressions, Mathematics

Assignment Help:

Above we have seen that (2x2 - x + 3) and (3x3 + x2 - 2x - 5) are the factors of 6x5 - x4 + 4x3 - 5x2 - x - 15. In this case we are able to find one factor given the other one. How are we going to solve in case when we are not given either of them. Finding the factors of a given expression forms the part of our attention now. First, we look at binomial expressions and once we understand this we move on to trinomials and polynomials. If the given expression is in the form of an identity (we look at them shortly) our job becomes easier otherwise we have to adopt trial and error method until we get at least one of the factors. Once we know one of the factors then by employing the division method we can get other factors.

Example 

Factorize x2 + 6x + 9.

If we substitute x = 1, the value of the expression will be (1)2 + 6(1) + 9 = 16

Since the value of the numerical expression is not 0, we substitute another value. We will continue to do so until we get a zero. 

If we substitute x = -1, the value of the expression will be (-1)2 + 6(-1) + 9 = 4

If we substitute x = 2, the value of the expression will be (2)2 + 6(2) + 9 = 25

If we substitute x = -2, the value of the expression will be (-2)2 + 6(-2) + 9 = 1

If we substitute x = 3, the value of the expression will be (3)2 + 6(3) + 9 = 36

We substitute x = -3, the value of the expression  will be (-3)2 + 6(-3) + 9 = 0

For x = -3, the value of the expression is 0. That is, x + 3 is one of the factors of the expression x2 + 6x + 9. To obtain the other factor we divide the expression by the factor we obtained. That will be

x + 3 )

x2 + 6x + 9

( x + 3

(-)

x2 + 3x

 


 

    3x + 9

 

 

 

(-)   3x + 9

 


 

 

            0

 

From the division, we observe that x + 3 is the other factor. When this is equated to zero we obtain x = - 3. Therefore, the factors of x2 + 6x + 9 are (x + 3)(x + 3) or (x + 3)2.

In the above example we note that x2 + 6x + 9 = (x + 3)2.  Isn't this identical to a2  + 2ab + b2 = (a + b)2? The value of 'a' being x and that of 'b' equal to 3. This is one of the basic identities we get to see in algebra. 


Related Discussions:- Factorization of expressions

Expert , i want to work with you, please guide me

i want to work with you, please guide me

Factor expressions involving large powers, Factor Expressions Involving Lar...

Factor Expressions Involving Large Powers, Radicals, and Trig Functions You can use substitution to factor expressions involving large powers, radicals, and trig functions

Find the external surface area, A shuttlecock used for playing badminton ha...

A shuttlecock used for playing badminton has the shape of a frustum of a Cone mounted on a hemisphere.  The external diameters of the frustum are 5 cm and 2 cm, and the height of t

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Decmiels, how do you re name percents to decimal

how do you re name percents to decimal

Continuity requirement, Continuity requirement : Let's discuss the continu...

Continuity requirement : Let's discuss the continuity requirement a little. Nowhere in the above description did the continuity requirement clearly come into play.  We need that t

Calenders, on which date of the week does 4th december 2001 falls?

on which date of the week does 4th december 2001 falls?

Statistics, marks frequency 0-9 8 10-19 10 20-29 ...

marks frequency 0-9 8 10-19 10 20-29 14 30-39 28 40-49 46 50-59 25 60-69 17 70-79 9 80-89 2 90-99 1 (

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd