Factorization of expressions, Mathematics

Assignment Help:

Above we have seen that (2x2 - x + 3) and (3x3 + x2 - 2x - 5) are the factors of 6x5 - x4 + 4x3 - 5x2 - x - 15. In this case we are able to find one factor given the other one. How are we going to solve in case when we are not given either of them. Finding the factors of a given expression forms the part of our attention now. First, we look at binomial expressions and once we understand this we move on to trinomials and polynomials. If the given expression is in the form of an identity (we look at them shortly) our job becomes easier otherwise we have to adopt trial and error method until we get at least one of the factors. Once we know one of the factors then by employing the division method we can get other factors.

Example 

Factorize x2 + 6x + 9.

If we substitute x = 1, the value of the expression will be (1)2 + 6(1) + 9 = 16

Since the value of the numerical expression is not 0, we substitute another value. We will continue to do so until we get a zero. 

If we substitute x = -1, the value of the expression will be (-1)2 + 6(-1) + 9 = 4

If we substitute x = 2, the value of the expression will be (2)2 + 6(2) + 9 = 25

If we substitute x = -2, the value of the expression will be (-2)2 + 6(-2) + 9 = 1

If we substitute x = 3, the value of the expression will be (3)2 + 6(3) + 9 = 36

We substitute x = -3, the value of the expression  will be (-3)2 + 6(-3) + 9 = 0

For x = -3, the value of the expression is 0. That is, x + 3 is one of the factors of the expression x2 + 6x + 9. To obtain the other factor we divide the expression by the factor we obtained. That will be

x + 3 )

x2 + 6x + 9

( x + 3

(-)

x2 + 3x

 


 

    3x + 9

 

 

 

(-)   3x + 9

 


 

 

            0

 

From the division, we observe that x + 3 is the other factor. When this is equated to zero we obtain x = - 3. Therefore, the factors of x2 + 6x + 9 are (x + 3)(x + 3) or (x + 3)2.

In the above example we note that x2 + 6x + 9 = (x + 3)2.  Isn't this identical to a2  + 2ab + b2 = (a + b)2? The value of 'a' being x and that of 'b' equal to 3. This is one of the basic identities we get to see in algebra. 


Related Discussions:- Factorization of expressions

Ploting of mathematical graphs, how can we represent this mathematical equa...

how can we represent this mathematical equation on a graph y=2x-1

Determine the laplace transform of the probability , 1. Let , where  ar...

1. Let , where  are independent identically distributed random variables according to an exponential distribution with parameter μ. N is a Binomially distribut

Determinant of an n×n matrix, How can we calculate the Determinant of an N×...

How can we calculate the Determinant of an N×N Matrix?

Which general famously stated ''i shall return'', Which general famously st...

Which general famously stated 'I shall return'? A. Bull Halsey B. George Patton C. Douglas MacArthur D. Omar Bradley

Solving a system of 2 equations addition-subtraction method, Solving a Syst...

Solving a System of 2 Equations Using the Addition/Subtraction Method To solve a system of linear equations using the addition/subtraction method, both equations should first b

Determine a particular solution to differential equation, Determine a parti...

Determine a particular solution for the subsequent differential equation. y′′ - 4 y′ -12 y = 3e5t + sin(2t) + te4t Solution This example is the purpose that we've been u

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd