Factorization of expressions, Mathematics

Assignment Help:

Above we have seen that (2x2 - x + 3) and (3x3 + x2 - 2x - 5) are the factors of 6x5 - x4 + 4x3 - 5x2 - x - 15. In this case we are able to find one factor given the other one. How are we going to solve in case when we are not given either of them. Finding the factors of a given expression forms the part of our attention now. First, we look at binomial expressions and once we understand this we move on to trinomials and polynomials. If the given expression is in the form of an identity (we look at them shortly) our job becomes easier otherwise we have to adopt trial and error method until we get at least one of the factors. Once we know one of the factors then by employing the division method we can get other factors.

Example 

Factorize x2 + 6x + 9.

If we substitute x = 1, the value of the expression will be (1)2 + 6(1) + 9 = 16

Since the value of the numerical expression is not 0, we substitute another value. We will continue to do so until we get a zero. 

If we substitute x = -1, the value of the expression will be (-1)2 + 6(-1) + 9 = 4

If we substitute x = 2, the value of the expression will be (2)2 + 6(2) + 9 = 25

If we substitute x = -2, the value of the expression will be (-2)2 + 6(-2) + 9 = 1

If we substitute x = 3, the value of the expression will be (3)2 + 6(3) + 9 = 36

We substitute x = -3, the value of the expression  will be (-3)2 + 6(-3) + 9 = 0

For x = -3, the value of the expression is 0. That is, x + 3 is one of the factors of the expression x2 + 6x + 9. To obtain the other factor we divide the expression by the factor we obtained. That will be

x + 3 )

x2 + 6x + 9

( x + 3

(-)

x2 + 3x

 


 

    3x + 9

 

 

 

(-)   3x + 9

 


 

 

            0

 

From the division, we observe that x + 3 is the other factor. When this is equated to zero we obtain x = - 3. Therefore, the factors of x2 + 6x + 9 are (x + 3)(x + 3) or (x + 3)2.

In the above example we note that x2 + 6x + 9 = (x + 3)2.  Isn't this identical to a2  + 2ab + b2 = (a + b)2? The value of 'a' being x and that of 'b' equal to 3. This is one of the basic identities we get to see in algebra. 


Related Discussions:- Factorization of expressions

The rank correlation coefficient (r), The Rank Correlation Coefficient (R) ...

The Rank Correlation Coefficient (R) Also identified as the spearman rank correlation coefficient, its reasons is to establish whether there is any form of association among tw

Explain the decimal system in detail, Explain The Decimal System in detail?...

Explain The Decimal System in detail? A decimal, such as 1.23, is made up of two parts: a whole number and a decimal fraction. In 1.23, the whole number is 1 and the decimal fr

Wronskian, In the earlier section we introduced the Wronskian to assist us ...

In the earlier section we introduced the Wronskian to assist us find out whether two solutions were a fundamental set of solutions. Under this section we will look at the other app

.., the circumference of a circle C of radius r is given by C=2pR.taking p ...

the circumference of a circle C of radius r is given by C=2pR.taking p to be 22/7 a)find the circumference when the radius is 28 cm b)find the radius when the circumference is 484

Rectilinear figure, In a parallelogram ABCD AB=20cm and AD=12cm.The bisecto...

In a parallelogram ABCD AB=20cm and AD=12cm.The bisector of angle A meets DC at E and BC produced at F.Find the length of CF.

Limits at infinity, Limits At Infinity, Part I : In the earlier section w...

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean

#algebra, what is the answer of 6_5x9_4x3(1_2)

what is the answer of 6_5x9_4x3(1_2)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd