Factorization of expressions, Mathematics

Assignment Help:

Above we have seen that (2x2 - x + 3) and (3x3 + x2 - 2x - 5) are the factors of 6x5 - x4 + 4x3 - 5x2 - x - 15. In this case we are able to find one factor given the other one. How are we going to solve in case when we are not given either of them. Finding the factors of a given expression forms the part of our attention now. First, we look at binomial expressions and once we understand this we move on to trinomials and polynomials. If the given expression is in the form of an identity (we look at them shortly) our job becomes easier otherwise we have to adopt trial and error method until we get at least one of the factors. Once we know one of the factors then by employing the division method we can get other factors.

Example 

Factorize x2 + 6x + 9.

If we substitute x = 1, the value of the expression will be (1)2 + 6(1) + 9 = 16

Since the value of the numerical expression is not 0, we substitute another value. We will continue to do so until we get a zero. 

If we substitute x = -1, the value of the expression will be (-1)2 + 6(-1) + 9 = 4

If we substitute x = 2, the value of the expression will be (2)2 + 6(2) + 9 = 25

If we substitute x = -2, the value of the expression will be (-2)2 + 6(-2) + 9 = 1

If we substitute x = 3, the value of the expression will be (3)2 + 6(3) + 9 = 36

We substitute x = -3, the value of the expression  will be (-3)2 + 6(-3) + 9 = 0

For x = -3, the value of the expression is 0. That is, x + 3 is one of the factors of the expression x2 + 6x + 9. To obtain the other factor we divide the expression by the factor we obtained. That will be

x + 3 )

x2 + 6x + 9

( x + 3

(-)

x2 + 3x

 


 

    3x + 9

 

 

 

(-)   3x + 9

 


 

 

            0

 

From the division, we observe that x + 3 is the other factor. When this is equated to zero we obtain x = - 3. Therefore, the factors of x2 + 6x + 9 are (x + 3)(x + 3) or (x + 3)2.

In the above example we note that x2 + 6x + 9 = (x + 3)2.  Isn't this identical to a2  + 2ab + b2 = (a + b)2? The value of 'a' being x and that of 'b' equal to 3. This is one of the basic identities we get to see in algebra. 


Related Discussions:- Factorization of expressions

How much wrapping paper will needed, Barbara is packing a wedding gift that...

Barbara is packing a wedding gift that is contained within a rectangular box 20 by 18 by 4 in. How much wrapping paper will she require? a. 512 in 2 b. 1,440 in 2 c. 1,0

How much did kara pay in interest, Kara borrowed $3,650 for one year at an ...

Kara borrowed $3,650 for one year at an annual interest rate of 16%. How much did Kara pay in interest? To ?nd out 16% of $3,650, multiply $3,650 through the decimal equivalent

Estimate whose time was the fastest, Nancy, Jennifer, Alex, and Joy ran a r...

Nancy, Jennifer, Alex, and Joy ran a race. Nancy's time was 50.24 seconds, Jennifer's was 50.32, Alex's was 50.9, and Joy's was 50.2. Whose time was the fastest? The fastest ti

Determine a particular solution to differential equation, Determine a parti...

Determine a particular solution for the subsequent differential equation. y′′ - 4 y′ -12 y = 3e5t + sin(2t) + te4t Solution This example is the purpose that we've been u

#permutation, #The digits 1,2,3,4and 5 are arranged in random order,to form...

#The digits 1,2,3,4and 5 are arranged in random order,to form a five-digit number. Find the probability that the number is a. an odd number. b.less than 23,000

Mechanical vibrations, This time we are going to take a look at an applicat...

This time we are going to take a look at an application of second order differential equations. It's now time take a look at mechanical vibrations. In exactly we are going to look

How to calculate probability of event, Q. How to calculate Probability of e...

Q. How to calculate Probability of event? Ans. What chance do I have to toss the coin and get a head? You might think 50-50, 50%. What about tossing it 5 times and getting

Making connections with maths, MAKING CONNECTIONS :  you have read about w...

MAKING CONNECTIONS :  you have read about what the ability to think mathematically involves. In this section we shall discuss ways of developing this ability in children. As yo

Demerits and merit-the median, The median Merits i.  This shows t...

The median Merits i.  This shows the centre of a described set of data ii.  Knowledge of the determination of the median may be extended to find out the quartiles i

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd