Factor theorem, Algebra

Assignment Help:

Factor Theorem

For the polynomial P ( x ) ,

1. If value of r is a zero of P ( x ) then x - r will be a factor of P ( x ) .

2. If x - r is a factor of P ( x ) then r will be a zero of P ( x ) .

The factor theorem leads to the below fact.

Fact 1

If P ( x ) is a polynomial of degree n & r is a zero of P (x ) then P ( x ) can be written in the given form.

                                     P ( x ) = ( x - r ) Q (x )

Where Q (x) refer to a polynomial with degree n -1 .Q (x) can be found by dividing P (x) by x - r .

There is one more fact that we have to get out of the way.

Fact 2

If P ( x ) = ( x - r ) Q ( x )& x = t is a zero of Q ( x ) then x = t will also be a zero of P ( x ) .

This fact is simple enough to check directly.  First, if x = t is a zero of Q ( x ) then we know that,

                                                                      Q (t) = 0

As that is what it means to be a zero.  Thus, if x = t is to be a zero of P (x) then all we have to do is illustrates that P (t) =0 and that's in fact quite simple. Following it is,

P (t) = (t - r) Q (t) = (t - r) (0) = 0 and hence x = t is a zero of P (x).


Related Discussions:- Factor theorem

Factorable quadratic equation, Let's begin with                         ...

Let's begin with                                                       x 2 + bx and notice that the x 2 hold a coefficient of one. That is needed in order to do this. Now,

Center of the hyperbola, The point where the two asymptotes cross is known ...

The point where the two asymptotes cross is known as the center of the hyperbola. Standard forms There are two standard forms of the hyperbola, one for each type illustrate

Law of radicals, change this radical to a algebraic expression with fractio...

change this radical to a algebraic expression with fractional exponnents 5 squar root x^3

Intersection of two hyperbolas, What are all of the points of intersection ...

What are all of the points of intersection for these two hyperbolas? Hyperbola 1 is centered at (-1, 829). Its foci are located at (-5.123, 829) and (3.123, 829). Everywhere along

Math, how do you do scientific notation

how do you do scientific notation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd