Fact of augmented matrix, Algebra

Assignment Help:

Fact

Following any system of equations there are accurately three possibilities for the solution.

1.   There will not be a solution.

2.   There will be just one solution.

3.   There will be infinitely many solutions.

It is exactly what we found the possibilities to be while we were looking at two equations.  It just turns out that it doesn't matter how several equations we've got. Still there are only these three possibilities.

Now, let's see how we can recognize the first & last possibility while we are using the augmented matrix method for solving.  In the earlier section we stated that we desired to employ the row operations to convert the augmented matrix into the following form,

434_Fact of Augmented Matrix.png

based upon the number of equations exist in the system.  It turns out that we ought to have added the qualifier, "if possible" to this instruction, since it isn't always probable to do this.  Actually, if it isn't possible to put it into one of these forms then we will know that we are in either the first or last opportunity for the solution to the system.

Before getting into some instance let's first address how we knew what the solution was depend on these forms of the augmented matrix. Let's work  along with the two equation case.

Since,

1854_Fact of Augmented Matrix1.png

is an augmented matrix always we can convert back to equations.  Each of rows represents an equation & the first column is the coefficient of x into the equation whereas the second column is the coefficient of the y in the equation. The final column is the constant which will be on the right side of the equation.

Therefore, if we do that for this case we get,

(1) x + (0) y = h                     ⇒          x = h

 (0) x + (1) y = k                  ⇒            y = k

and it is exactly what we said the solution was in the previous section.

This idea of turning an augmented matrix back to equations will be significant in the following examples.

Speaking of which, let's go further on and work a couple of examples. We will begin out along with the two systems of equations which we looked at in the first section which gave the special cases of the solutions.


Related Discussions:- Fact of augmented matrix

Probability, Your school holds a spring carnival each year to raise money f...

Your school holds a spring carnival each year to raise money for local charities. you are running a carnival game called lucky seven. the player must choose whether to throw a dart

Solving word problems using linear sytems, Kelly has 24 and quarters worth ...

Kelly has 24 and quarters worth $3.60. How many quarters does she have?

Boolean logic-truth table and digital circuit diagram, Part A. relates to d...

Part A. relates to data representation and Part B. relates to Boolean logic.  Part A. Data Representation The very first thing you need to do to begin Part A is to make

Draws back of simpler method, First method draws back                  ...

First method draws back                          Consider the following equation.                                                                7 x   = 9 It is a fairly

Determine a list of all possible rational zeroes, Determine a list of all p...

Determine a list of all possible rational zeroes Let's see how to come up along a list of possible rational zeroes for a polynomial. Example    Find a list of all possible

Fx, How do i do an fx problem?

How do i do an fx problem?

Solving problem using polynomial inequalities, Example Solve 3x 2 - 2 x -...

Example Solve 3x 2 - 2 x -11 = 0. Solution In this case the polynomial doesn't factor thus we can't do that step.  Though, still we do have to know where the polynomial i

Sum of cubes, x= sum of 2 perfect cubes in two ways

x= sum of 2 perfect cubes in two ways

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd