Extrinsic material, Electrical Engineering

Assignment Help:

Extrinsic Material

  • In addition to thermally generated carriers, it is possible to create carriers in the semiconductor by purposely introducing impurities into the crystal => doping.
  • Most common technique for varying the conductivity of semiconductors.
  • By doping, the crystal can be made to have predominantly electrons (n-type) or holes (p- type).
  • When a crystal is doped such that the equilibrium concentrations of electrons (n0) and holes (p0) are different from the intrinsic carrier concentration (ni), the material is said to be extrinsic.
  • Doping creates additional levels within the band gap.
  • In Si, column V elements of the periodic table (e.g., P, As, Sb) introduce energy levels very near (commonly 0.03-0.06 eV) the conduction band.
  • At 0 K, these levels are filled with electrons, and very little thermal energy (50 K to 100 K) is required for these electrons to get excited to the conduction band.
  • Since these levels donate electrons to the conduction band, they are referred to as the donor levels.
  • Thus, Si doped with donor impurities can have a significant number of electrons in the conduction band even when the temperature is not sufficiently high enough for the intrinsic carriers to dominate, i.e., n0>> ni, p0 => n-type material, with electrons as majority carriers and holes as minority carriers.
  • In Si, column III elements of the periodic table (for example, B, Al, Ga, In) introduce energy levels very near (commonly 0.03-0.06 eV) the valence band.
  • At 0 K, these levels are empty, and very little thermal energy (50 K to 100 K) is required for electrons in the valence band to get excited to these levels, and leave behind holes in the valence band.
  • Since these levels accept electrons from the valence band, they are referred to as the acceptor levels.
  • Thus, Si doped with acceptor impurities can have a significant number of holes in the valence band even at a very low temperature, i.e., p0>> ni, n0 =>, p-type material, along with holes as majority carriers and electrons as minority carriers.
  • The extra electron for column V elements is loosely bound and it can be liberated very Easily => ionization; thus, it is free to participate in current conduction.
  • Similarly, column III elements create holes in the valence band, and they can also participate in current conduction.
  • Rough calculation of the ionization energy can be made based on the Bohr's model for H2 atoms, considering the loosely bound electron orbiting around the tightly bound core electrons. Thus,

    1536_Extrinsic Material.png

Where εr is the relative permittivity of Si.


Related Discussions:- Extrinsic material

Explain the and gates - microprocessor, Explain the AND GATES - Microproces...

Explain the AND GATES - Microprocessor? The AND GATE has a logic 1 or high output if the entire inputs are high. The boolean and symbol expression for a 3-input AND gate is sho

Why common collector amplifier is known aa emitter follower, Q. Why a commo...

Q. Why a common collector amplifier is called an emitter follower?         When the input voltage goes through its positive half cycle, the output voltage is also seen to go th

Produce electrical power using solar cell - electrical power, 1. Suppose th...

1. Suppose the California government sets aside a square patch of land that is 10 kilometers on each side and plans to use this land to generate electrical power with wind turbines

High-pass t filters, High-pass T filters: Three-element filters can co...

High-pass T filters: Three-element filters can comprise a 'T' or 'π' topology and in either geometries, a low-pass, band-pass, high-pass, or band-stop characteristic is feasib

Differentiator.., in case of a differentiator will the amplitude rise or fa...

in case of a differentiator will the amplitude rise or falls?

Calculate the voltage regulation, The per-phase synchronous reactance of a ...

The per-phase synchronous reactance of a three-phase, wye-connected, 2.5-MVA, 6.6-kV, 60-Hz turboalternator is 10 . Neglect the armature resistance and saturation. Calculate the v

Rc phase shift, what is the equation for rc phase shift oscillator?

what is the equation for rc phase shift oscillator?

Sequential circuit, a 4 bit synchronous counter uses flip flops with propag...

a 4 bit synchronous counter uses flip flops with propagation delay times of 15ns each. what will be the maximum possible time requires for change of state?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd