Extrinsic material, Electrical Engineering

Assignment Help:

Extrinsic Material

  • In addition to thermally generated carriers, it is possible to create carriers in the semiconductor by purposely introducing impurities into the crystal => doping.
  • Most common technique for varying the conductivity of semiconductors.
  • By doping, the crystal can be made to have predominantly electrons (n-type) or holes (p- type).
  • When a crystal is doped such that the equilibrium concentrations of electrons (n0) and holes (p0) are different from the intrinsic carrier concentration (ni), the material is said to be extrinsic.
  • Doping creates additional levels within the band gap.
  • In Si, column V elements of the periodic table (e.g., P, As, Sb) introduce energy levels very near (commonly 0.03-0.06 eV) the conduction band.
  • At 0 K, these levels are filled with electrons, and very little thermal energy (50 K to 100 K) is required for these electrons to get excited to the conduction band.
  • Since these levels donate electrons to the conduction band, they are referred to as the donor levels.
  • Thus, Si doped with donor impurities can have a significant number of electrons in the conduction band even when the temperature is not sufficiently high enough for the intrinsic carriers to dominate, i.e., n0>> ni, p0 => n-type material, with electrons as majority carriers and holes as minority carriers.
  • In Si, column III elements of the periodic table (for example, B, Al, Ga, In) introduce energy levels very near (commonly 0.03-0.06 eV) the valence band.
  • At 0 K, these levels are empty, and very little thermal energy (50 K to 100 K) is required for electrons in the valence band to get excited to these levels, and leave behind holes in the valence band.
  • Since these levels accept electrons from the valence band, they are referred to as the acceptor levels.
  • Thus, Si doped with acceptor impurities can have a significant number of holes in the valence band even at a very low temperature, i.e., p0>> ni, n0 =>, p-type material, along with holes as majority carriers and electrons as minority carriers.
  • The extra electron for column V elements is loosely bound and it can be liberated very Easily => ionization; thus, it is free to participate in current conduction.
  • Similarly, column III elements create holes in the valence band, and they can also participate in current conduction.
  • Rough calculation of the ionization energy can be made based on the Bohr's model for H2 atoms, considering the loosely bound electron orbiting around the tightly bound core electrons. Thus,

    1536_Extrinsic Material.png

Where εr is the relative permittivity of Si.


Related Discussions:- Extrinsic material

Wien bridge, How i prepare a wien bridge for my college assignemen?

How i prepare a wien bridge for my college assignemen?

Chemistry, what is the definition of laws of chemical combination ?

what is the definition of laws of chemical combination ?

Function generator, explain the waorking principle of function generator

explain the waorking principle of function generator

Determine the current by mesh analysis, Q. Determine the current I through ...

Q. Determine the current I through the 10- resistor of the circuit of Figure by employing the node-voltage method. Check by mesh analysis.

Pdc, disadvantages of shunt&series clippers

disadvantages of shunt&series clippers

Apply required morphological operations and give the output, You are given ...

You are given a binary image consisting of only zeros and ones, see image-A. Apply required morphological operations and give the output images on the grid.

Technical losses in power systems, Technical Losses in Power Systems T...

Technical Losses in Power Systems The technical losses in power systems occur because of energy dissipated in the conductors and equipment used for transmission, transformat

DC. motors, what''s the difference between DC. motors and AC. motors

what''s the difference between DC. motors and AC. motors

Dual beam, explane the special features of dual beam?

explane the special features of dual beam?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd