Extrinsic material, Electrical Engineering

Assignment Help:

Extrinsic Material

  • In addition to thermally generated carriers, it is possible to create carriers in the semiconductor by purposely introducing impurities into the crystal => doping.
  • Most common technique for varying the conductivity of semiconductors.
  • By doping, the crystal can be made to have predominantly electrons (n-type) or holes (p- type).
  • When a crystal is doped such that the equilibrium concentrations of electrons (n0) and holes (p0) are different from the intrinsic carrier concentration (ni), the material is said to be extrinsic.
  • Doping creates additional levels within the band gap.
  • In Si, column V elements of the periodic table (e.g., P, As, Sb) introduce energy levels very near (commonly 0.03-0.06 eV) the conduction band.
  • At 0 K, these levels are filled with electrons, and very little thermal energy (50 K to 100 K) is required for these electrons to get excited to the conduction band.
  • Since these levels donate electrons to the conduction band, they are referred to as the donor levels.
  • Thus, Si doped with donor impurities can have a significant number of electrons in the conduction band even when the temperature is not sufficiently high enough for the intrinsic carriers to dominate, i.e., n0>> ni, p0 => n-type material, with electrons as majority carriers and holes as minority carriers.
  • In Si, column III elements of the periodic table (for example, B, Al, Ga, In) introduce energy levels very near (commonly 0.03-0.06 eV) the valence band.
  • At 0 K, these levels are empty, and very little thermal energy (50 K to 100 K) is required for electrons in the valence band to get excited to these levels, and leave behind holes in the valence band.
  • Since these levels accept electrons from the valence band, they are referred to as the acceptor levels.
  • Thus, Si doped with acceptor impurities can have a significant number of holes in the valence band even at a very low temperature, i.e., p0>> ni, n0 =>, p-type material, along with holes as majority carriers and electrons as minority carriers.
  • The extra electron for column V elements is loosely bound and it can be liberated very Easily => ionization; thus, it is free to participate in current conduction.
  • Similarly, column III elements create holes in the valence band, and they can also participate in current conduction.
  • Rough calculation of the ionization energy can be made based on the Bohr's model for H2 atoms, considering the loosely bound electron orbiting around the tightly bound core electrons. Thus,

    1536_Extrinsic Material.png

Where εr is the relative permittivity of Si.


Related Discussions:- Extrinsic material

Wave anlysers, Operation of heterodyne wave analyzer with block diagram

Operation of heterodyne wave analyzer with block diagram

Sign flag - sub subtract instruction , Sign flag Since D 7  bit in ...

Sign flag Since D 7  bit in the  results is 0sign flag is reset. This also  shown that the results is positive.

What do you mean by pinch off voltage, Q. What do you mean by Pinch off vol...

Q. What do you mean by Pinch off voltage? As the voltage Vds is increased from 0 to a few volts, the drain current will increase as  determined by Ohm's law and the plot of Id

Applications of holography, Applications of holography 1.       Hologra...

Applications of holography 1.       Holography is used in the non-destructive tests by interferometic methods. In this method called double exposure holographic interferometry,

Binary multiplication, Binary Multiplication Multiplication can be seen a...

Binary Multiplication Multiplication can be seen as multiple additions. For  example  if we  have to multiple 4 and 8 we can  8, 4  time to get the  solution. Actually this  conc

Write down expressions for vbn, Q. Referring to Figure, let V BN = V RN =...

Q. Referring to Figure, let V BN = V RN = 120 V rms magnitude, and V BR = 240 V rms magnitude. Write down expressions for v BN (t), v RN (t), and v BR (t), and sketch them as a

Electromagnetic Computational (MATLAB), Hey Dear i have a hw in MATLAB by a...

Hey Dear i have a hw in MATLAB by applying Finite Element Method there(Electromagnetic) and i need your help with it. please take alook at the question and let me know if you can h

Working of self - excited generators, Q. Working of self - excited generato...

Q. Working of self - excited generators? For self-excited generators, residual magnetism must be present in the ferromagnetic circuit of the machine in order to start the self-

Petri nets, Discrete Systems Control: cat and mouse example with 4 rooms us...

Discrete Systems Control: cat and mouse example with 4 rooms using petri nets

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd