Extrinsic material, Electrical Engineering

Assignment Help:

Extrinsic Material

  • In addition to thermally generated carriers, it is possible to create carriers in the semiconductor by purposely introducing impurities into the crystal => doping.
  • Most common technique for varying the conductivity of semiconductors.
  • By doping, the crystal can be made to have predominantly electrons (n-type) or holes (p- type).
  • When a crystal is doped such that the equilibrium concentrations of electrons (n0) and holes (p0) are different from the intrinsic carrier concentration (ni), the material is said to be extrinsic.
  • Doping creates additional levels within the band gap.
  • In Si, column V elements of the periodic table (e.g., P, As, Sb) introduce energy levels very near (commonly 0.03-0.06 eV) the conduction band.
  • At 0 K, these levels are filled with electrons, and very little thermal energy (50 K to 100 K) is required for these electrons to get excited to the conduction band.
  • Since these levels donate electrons to the conduction band, they are referred to as the donor levels.
  • Thus, Si doped with donor impurities can have a significant number of electrons in the conduction band even when the temperature is not sufficiently high enough for the intrinsic carriers to dominate, i.e., n0>> ni, p0 => n-type material, with electrons as majority carriers and holes as minority carriers.
  • In Si, column III elements of the periodic table (for example, B, Al, Ga, In) introduce energy levels very near (commonly 0.03-0.06 eV) the valence band.
  • At 0 K, these levels are empty, and very little thermal energy (50 K to 100 K) is required for electrons in the valence band to get excited to these levels, and leave behind holes in the valence band.
  • Since these levels accept electrons from the valence band, they are referred to as the acceptor levels.
  • Thus, Si doped with acceptor impurities can have a significant number of holes in the valence band even at a very low temperature, i.e., p0>> ni, n0 =>, p-type material, along with holes as majority carriers and electrons as minority carriers.
  • The extra electron for column V elements is loosely bound and it can be liberated very Easily => ionization; thus, it is free to participate in current conduction.
  • Similarly, column III elements create holes in the valence band, and they can also participate in current conduction.
  • Rough calculation of the ionization energy can be made based on the Bohr's model for H2 atoms, considering the loosely bound electron orbiting around the tightly bound core electrons. Thus,

    1536_Extrinsic Material.png

Where εr is the relative permittivity of Si.


Related Discussions:- Extrinsic material

Power and power distribution, design a single phase distribution circuit fr...

design a single phase distribution circuit from a supply point to a load

Calculate the length of the wire required to get resistance, An  electric  ...

An  electric  heater  element  is  made  of  Nichrome  wire  having  resistivity  equal  to 100 ×10 -8 ohm-metre. The diameter of the wire is 0.3 mm. Calculate the length of the w

Examples of attribute data relevant for a power utility, Examples of attrib...

Examples of attribute data relevant for a power utility: Examples of attribute data relevant for a power utility are given below. •          Consumer data such as categor

Electrical Safety Management, What will this voltmeter register when connec...

What will this voltmeter register when connected to a battery as shown(assume a battery voltage of 6 volt)?

Ideal or perfect transformer, a) A 230 V/25V, 50 HZ transformer with a rate...

a) A 230 V/25V, 50 HZ transformer with a rated primary current of 1,2 Amps is used to supply a number of 25 V, 30 Watt halogen light bulbs. Assuming an ideal transformer and tha

How much energy could be saved on motor.., configured as attraction force ...

configured as attraction force rotation and brief stutter at zero degree putting a diode to a capacitor collecting energy of collapsing magnetic field to recycle on next power inpu

Explain the properties of low resistivity materials, Explain the properties...

Explain the properties of low resistivity materials. Low resistivity materials: The conducting materials containing resistivity from 10 -8 to 10 -6 ohm-m come under this cl

Derating factor, Conductors with a temperature rating of 75 degrees C are r...

Conductors with a temperature rating of 75 degrees C are run in an area with an ambient temperature of 55 degrees C. What would be the de-rating factor that should be applied?

Define byte assembler directive, What do you understand by DB assembler...

What do you understand by DB assembler directive?   DB (Define Byte): The DB directive explains by a byte-type variable (that is a variable that occupies one byte of memo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd