Expression trees, Data Structure & Algorithms

Assignment Help:

What are the expression trees? Represent the below written expression using a tree.

Give a relevant comment on the result that you get when this tree is traversed in Preorder, Inorder and postorder. (a-b) / ((c*d)+e)

The leaves of an expression tree are operands, for instance constants or variable names, and the other nodes include operators. This particular tree happens to be a binary tree, because all of the operations are binary, and although this is the easiest case, it is probable for nodes to have more than two children. It can also be possible for a node to have only one child, as is the case with the unary minus operator. We can evaluate the expression tree, T, by applying the operator at the root of it  to the values obtained by recursively evaluating the left and right subtrees.

The expression tree obtained for the expression: (a - b ) / ( ( c * d ) + e))

1269_expression_tree.png

The traversal of the above drawn expression tree gives the following result:-

Preorder:- ( / - a b + * c d e)

This expression is the same as the "prefix notation" of the original expression.

Inorder:- ( a - b) / ((c * d) + e )

Thus the inorder traversal gives us the actual expression.

Postorder:- ( a b - c d * e + / )

Thus the postorder traversal of this gives us the "posfix notation" or we can say the "Reverse Polish notation" of the original expression.


Related Discussions:- Expression trees

Data searching, In file access: what is the difference between serial, seq...

In file access: what is the difference between serial, sequential and indexed sequential searching

What are the different ways of representing a graph, What are the different...

What are the different ways of representing a graph? The different ways of representing a graph is: Adjacency list representation: This representation of graph having of an

Two - way merge sort, Merge sort is also one of the 'divide & conquer' clas...

Merge sort is also one of the 'divide & conquer' classes of algorithms. The fundamental idea in it is to split the list in a number of sublists, sort each of these sublists & merge

Explain internal and external nodes, Explain Internal and External Nodes ...

Explain Internal and External Nodes  To  draw  the  tree's  extension  by  changing  the  empty  subtrees  by  special nodes. The  extra  nodes shown by little squares are know

Draw a b-tree., Q. Draw a B-tree of order 3 for the sequence of keys writte...

Q. Draw a B-tree of order 3 for the sequence of keys written below: 2, 4, 9, 8, 7, 6, 3, 1, 5, 10

BST has two children, If a node in a BST has two children, then its inorder...

If a node in a BST has two children, then its inorder predecessor has No right child

Tree structure, We would like to implement a 2-4Tree containing distinct in...

We would like to implement a 2-4Tree containing distinct integer keys. This 2-4Tree is defined by the ArrayList Nodes of all the 2-4Nodes in the tree and the special 2-4Node Root w

Preorder traversal of a binary tree, Preorder traversal of a binary tree ...

Preorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; };   preorder(struct N

Graph search using iterative deepening, Prove that uniform cost search and ...

Prove that uniform cost search and breadth- first search with constant steps are optimal when used with the Graph-Search algorithm (see Figure). Show a state space with varying ste

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd