Exponential functions, Mathematics

Assignment Help:

Exponential Functions : We'll begin by looking at the exponential function,

                                                             f ( x ) = a x

We desire to differentiate this. The power rule which we looked previous section won't work as which required the exponent to be a fixed number & the base to be a variable. That is accurately the opposite from what we've got with this function.  Thus, we're going to have to begin with the definition of the derivative.

698_exponental function.png

Now, the a x is not influenced by the limit as it doesn't have any h's in it and hence is a constant so far as the limit is concerned.  Therefore we can factor this out of the limit. It specified,

2380_exponental function1.png

Now let's notice as well that the limit we've got above is accurately the definition of the derivative  of f ( x ) = a x  at x = 0 , i.e. f ′ (0) .  Thus, the derivative becomes,

                                                 f ′ ( x ) = f ′ (0)a x

 Thus, we are type of stuck.  We have to know the derivative to get the derivative!

There is one value of a that we can deal along with at this point. There are actually a variety of ways to define e. Following are three of them.


Related Discussions:- Exponential functions

Fundamental theorem of integral facts formulasproperties, Fundamental Theor...

Fundamental Theorem of Calculus, Part I If f(x) is continuous on [a,b] so, g(x) = a ∫ x f(t) dt is continuous on [a,b] and this is differentiable on (a, b) and as,

Strategy for series - sequences and series, Strategy for Series Now t...

Strategy for Series Now that we have got all of our tests out of the way it's time to think regarding to the organizing all of them into a general set of strategy to help us

5th grade, 6 and 3/8 minus 1 and 3/4

6 and 3/8 minus 1 and 3/4

TRIANGLES, ABCD is a trapezium AB parallel to DC prove square of AC - squar...

ABCD is a trapezium AB parallel to DC prove square of AC - square of BCC= AB*

Using euclid''s algorithm find the value of x & y, If d is the HCF of 30, 7...

If d is the HCF of 30, 72, find the value of x & y satisfying d = 30x + 72y. (Ans:5, -2 (Not unique) Ans:    Using Euclid's algorithm, the HCF (30, 72) 72 = 30 × 2 + 12

What is deductive reasoning, What is Deductive Reasoning ? Geometry is...

What is Deductive Reasoning ? Geometry is based on a deductive structure -- a system of thought in which conclusions are justified by means of previously assumed or proved sta

Similar triangles, S IMILAR TRIANGLES : Geometry  is  the  right  ...

S IMILAR TRIANGLES : Geometry  is  the  right  foundation  of all  painting,  I have  decided to  teach its  rudiments  and  principles  to  all  youngsters  eager for  ar

Define the correlations, A retention counselor at a state university believ...

A retention counselor at a state university believes that freshman year success is related to high school standard tests in math and reading, and in the number of credits the stude

Find the value of p and q for which the system of equations, Find the value...

Find the value of p and q for which the system of equations represent coincident lines 2x +3y = 7, (p+q+1)x +(p+2q+2)y = 4(p+q)+1 Ans: a 1  = 2, b 1 = 3, c 1 = 7 a 2  =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd