Exponential functions, Mathematics

Assignment Help:

Exponential Functions : We'll begin by looking at the exponential function,

                                                             f ( x ) = a x

We desire to differentiate this. The power rule which we looked previous section won't work as which required the exponent to be a fixed number & the base to be a variable. That is accurately the opposite from what we've got with this function.  Thus, we're going to have to begin with the definition of the derivative.

698_exponental function.png

Now, the a x is not influenced by the limit as it doesn't have any h's in it and hence is a constant so far as the limit is concerned.  Therefore we can factor this out of the limit. It specified,

2380_exponental function1.png

Now let's notice as well that the limit we've got above is accurately the definition of the derivative  of f ( x ) = a x  at x = 0 , i.e. f ′ (0) .  Thus, the derivative becomes,

                                                 f ′ ( x ) = f ′ (0)a x

 Thus, we are type of stuck.  We have to know the derivative to get the derivative!

There is one value of a that we can deal along with at this point. There are actually a variety of ways to define e. Following are three of them.


Related Discussions:- Exponential functions

Calculus, I need help fast with my calculus work

I need help fast with my calculus work

Integration-mathematics, Integration Integration is the reversal of di...

Integration Integration is the reversal of differentiation An integral can either be indefinite while it has no numerical value or may definite while have specific numerical v

Find the common difference & write the next 3 terms, If the following terms...

If the following terms form a AP. Find the common difference & write the next 3 terms3, 3+ √2, 3+2√2, 3+3√2.......... Ans:    d= √2 next three terms 3 + 4 √ 2 , 3 + 5√ 2 ,

1, what''s the beneit of study mathematics ?

what''s the beneit of study mathematics ?

Show that the angles subtended at the centre , A circle touches the sides o...

A circle touches the sides of a quadrilateral ABCD at P, Q, R and S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd