Exponential functions, Algebra

Assignment Help:

Definition of an exponential function

If b is any number like that b = 0 and b ≠ 1 then an exponential function is function in the form,

                                                     f( x ) = b x

Where b is the base and x is any real number.

Notice that now the x is in the exponent & the base is a fixed number.  It is exactly the opposite through what we've illustrated to this point. To this point the base has been the variable, x in most of the cases, and the exponent was a fixed number.  Though, in spite of these differences these functions evaluate in precisely the similar way as those that we are utilized to. 

Before we get too far into this section we have to address the limitation on b. We ignore one and zero since in this case the function would be,

                             f( x ) = 0x  = 0        and f( x) = 1x  = 1

and these are constant functions & won't have several same properties that general exponential functions have.

Next, we ignore negative numbers so that we don't get any complex values out of the function evaluation.  For example if we allowed b = -4 the function would be,

                                   f(x)=(-4)x            ⇒ f (1/2)=(-4)(1/2)=√(-4)    

and as you can illustrates there are some function evaluations which will give complex numbers. We only desire real numbers to arise from function evaluation & so to ensure of this we need that b not be a negative number.

Now, let's take some graphs.  We will be capable to get most of the properties of exponential functions from these graphs.


Related Discussions:- Exponential functions

Solving quadratic equation using extracting square root, a 9f2 square paint...

a 9f2 square painting is mounted with border on a square frame. if the total area of the border is 3.25 ft2, what is the length of a side of the frame?

Sketch the graph through the process of finding the zeroes, Sketch the grap...

Sketch the graph through the process of finding the zeroes Example Sketch the graph of                                  P ( x ) = x 4 - x 3 - 6x 2 . Solution

Binary, changing of binary to hexadecimal

changing of binary to hexadecimal

Weq, wqdweq wqre

wqdweq wqre

Solve the given log function, Example: Solve following equations. 2 log...

Example: Solve following equations. 2 log 9 (√x) - log 9 (6x -1) = 0 Solution  Along with this equation there are two logarithms only in the equation thus it's easy t

Using transformation sketch the graph, Using transformation sketch the grap...

Using transformation sketch the graph of each of the following.                                             g ( x ) = - x 2 Solution (a)  Depending on the placement of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd