Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Time-Dependent Circuit Analysis?
The response of networks to time-varying sources is considered in this chapter. The special case of sinusoidal signals is of particular importance, because the low-frequency signals (i.e., currents and voltages) that appear in electric power systems as well as the high-frequency signals in communications are usually sinusoidal. The powerful technique known as phasor analysis, which involves the use of complex numbers, is one of the electrical engineer's most important tools developed to solve steady-state ac circuit problems. Since a periodic signal can be expressed as a sumof sinusoids through a Fourier series, and superposition applies to linear systems, phasor analysis will be used to determine the steady-state response of any linear system excited by a periodic signal. Thus the superposition principle allows the phasor technique to be extended to determine the system response of a linear system.
The total response of a system containing energy-storage elements (capacitors and inductors) is analyzed in terms of natural and forced responses (or transient and steady-state responses). The Laplace transformation, which provides a systematic algebraic approach for determining both the forced and the natural components of a network response. The concept of a transfer function is also introduced along with its application to solve circuit problems. The network response to sinusoidal signals of variable frequency is investigated. Also, two-port networks and block diagrams, in terms of their input-output characteristics.
Q. Explain about Direct-current machines? Generally speaking, conventional dc generators are becoming obsolete and increasingly often are being replaced by solid-state rectifie
Future scope on MATLAB in India
Q. Expain different control function categories,And also discuss that how they help in signalling and control. Ans: In some switching systems, Control subsystem may be a
Q. Explain the conditions under which an RC circuit behaves as Differentiator Differentiator is a circuit in which the output voltage is directly proportional to the derivative
T h er e are three main types - The Shunt Connected DC motor in which the armature coils are connected in parallel with the field coils The Serie
Q. The energy stored in a 2-µF capacitor is given by w c (t) = 9e -2t µJ for t ≥ 0. Find the capacitor voltage and current at t = 1s.
The following four output displays of an oscilloscope (right hand side, below) show waveforms of a biased diode ac circuit. An example is illustrated on the left hand side. VIN is
A battery having of 5 cells with emf and internal resistance of every cell is 1.5V and 0.25Ω connected in series. If the current flow by load resistance is 1.5A, calculate the valu
Power up the "TIMS" unit by using the switch at the back. Connect the Pico Virtual Instrument (PicoScope) to the PC as per Appendix 1 On the "TIMS" unit, connect the 2 kHz (s
a) A 230 V/25V, 50 HZ transformer with a rated primary current of 1,2 Amps is used to supply a number of 25 V, 30 Watt halogen light bulbs. Assuming an ideal transformer and tha
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd