Explain the working of A/D converter, Computer Engineering

Assignment Help:

With the help of a neat diagram, explain the working of a successive approximation A/D converter

Ans:

Successive Approximation ADC:

It is the most broadly used A/D converter. By the name suggests, the digital output tends towards analog input by successive approximations. While Successive Approximation ADC, the comparison along with the input analog voltage is completed in descending order starting from the maximum voltage. Fig.(a) demonstrates the block diagram of SA A/D converter. The major elements are Op-amp Comparator, SA register, Control Logic and D/A converter. This uses Digital to Analog converter like a feedback component. The control logic is the most significant part of Successive Approximation Converter, as it decides the next step to be occupied. The ring counter gives timing waveform to control the operation of the converter. The Digital to Analog Converter unit, n bit register and ring counter are all reset through the first pulse from the ring counter. The ring counter having a single one sets the MSB of the Digital to Analog Converter for 1 and another to 0.

 611_Block Diagram of Successive Approximation AD Converter.png

Fig.(a) Block Diagram of Successive Approximation A/D Converter

The fundamental operating principle of Successive Approximation A/D Converter is that the voltage output of DAC consequent to MSB is compared through the comparator along with the input voltage and the bit 1 is retained, if the voltage is less. If the voltage is more, this is reset to 0 and counter moves to subsequent position. The same decisions are made at each bit position till the nearest value is reached.

 Suppose that the MSB of a unipolar 6 bit converter generates 10 V output and we should measure an analog output voltage of 8.2 V. All bits divide the voltage with 2 therefore the voltages for the 6 bits from MSB downwards are:

Bits               5                   4                   3                2                 1                 0

Voltage        10                 5                 2.5             1.25            0.625          0.3125

                  MSB                                                                                          LSB

The operation of SA A/D converter is illustrated in Table no.(a). Assume that the analog input be 8.2 V. The SA register is firstly set to zero. After that 10 is placed in MSB. It is fed to D/A converter whose output goes to comparator. Because the analog input (8.2 V) is greater than D to A output (that is, 10 V), the MSB is set to one. After that 1 is placed in bit next to MSB (that is, 1 is placed in second position). At this time the output of D/A is 5 V. Because analog input is less than 5 V, this is reset to 0. Next 0 is placed in third position. Now the D/A output is (5+2.5=7.5V) which is less than analog input. Thus, this 0 bit is retained and 0 is positioned in the next bit (that is, fourth position). This time the D/A output is (7.5+1.25=8.75), that is more than analog input. Thus, the 1 bit is placed in fifth position. At this moment the D/A output is (8.75+0.625=8.125) that is less than analog input, this is reset to 0. Currently 0 is placed in LSB producing a D/A output of (8.125+0.3125=8.4375) that  is  more  than  analog  input. Thus, LSB is set to one.

The different steps and voltages are tabulated in Table no. (a).

Step

Register

DAC OutputComparator decision

Comparator decision

w.r.t 8.2V.

Start

 

2

 

3

 

4

 

5

 

6

100000

 

010000

 

011000

 

011100

 

011010

 

011011

10

 

5

 

5+2.5=7.5

 

7.5+1.25=8.75

 

7.5+0.625=8.125

 

8.125+0.3125=8.4375

High

 

Low

 

Low

 

High

 

Low

 

High

Table (a)

The D/A converter waveform is demonstrated in fig. (b)

1045_Output Waveform of DA Converter.png

Fig.(b) Output Waveform of D/A Converter

Features:

 (i) This is one of the most widely used ADC

(ii) Conversion time of this is very next simply to Flash or Parallel ADC

(iii) SACs contain fixed value of conversion time which is not dependent upon the value of analog input voltage.

(iv) Data can be taken out either in parallel or in serial.

(v) Throughout the period of comparison the input analog voltage must be held constant and therefore the input to comparator is by a Sample Hold circuit.


Related Discussions:- Explain the working of A/D converter

Simulate a real life product development , The goal is to simulate a real l...

The goal is to simulate a real life product development and familiarize learners with the design process of a system, component, or process to meet desired requires within realisti

Explain the e-cheques verses credit cards in brief, Explain the E-cheques v...

Explain the E-cheques verses Credit Cards in brief. E-cheques: E-cheques are utilized for business dealing into e-commerce. Transactions of such cheques take place onto Inter

What is the function of a tlb, What is the function of a TLB (translation...

What is the function of a TLB (translation look-aside buffer)? A small cache called the TLB is interporated into MMU, which having of the page table entries that correspondi

What are the application-oriented languages, What are the Application-orien...

What are the Application-oriented languages Application-oriented languages are highest level, meaning very easy to write and assembly languages are the lowest, meaning hardest

Illustrate about fourth generation computers, Q. Illustrate about fourth ge...

Q. Illustrate about fourth generation computers? One of the main milestones in IC technology is Very large scale integration (VLSI) where thousands of transistors can be integr

Define virtualisation and explain computer architecture, Rentrag has decide...

Rentrag has decided to replace all of the computers currently being used by all of the business and office staff. He has asked you to recommend a set of specification for computers

Computer Architecture, As an advocate of CISC architecture to RISC architec...

As an advocate of CISC architecture to RISC architecture, what are the merits and demerits of CISC to RISC architecture

Explain message, Differentiate between message switching, packet switching ...

Differentiate between message switching, packet switching and circuit switching Message switching: Recourse computer sends data to switching office that stores the data in

How to update bios chip, There are two methods to update your BIOS chip: ...

There are two methods to update your BIOS chip: 1. Flash it (software method) 2. Program it with an EEPROM programmer. This is a hardware method. This is how we at BIOSMAN pr

What are the 3 segments of the default route, What are the 3 segments of th...

What are the 3 segments of the default route, that is there in an ASP.NET MVC application? Ans)  Segment 1st - Controller Name Segment 2nd - Action Method Name Segment 3r

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd