Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Explain the Synchronous Machines?
A synchronous machine, unlike an induction (or asynchronous) machine, only develops torque at a fixed, so called, synchronous speed - ns which is related to the supply frequency f and the number of pole-pairs p as follows:
ns = 60 . f / p
The main application of a synchronous machine is as a generating device for the bulk conversion of mechanical energy (from a gas, steam or water turbine or a diesel engine) to electrical energy. It is therefore found in all types of power generating stations and also standby generating plants. In the case of a steam plant, the machine is often referred to as a turbo-generator, turbine generator or turbo-alternator. Electrical machines are in general reversible in nature meaning that they are capable of operating both as a motor and as a generator. In this sense, the synchronous machine is no exception. A good example of this are pumped-storage hydro-electric schemes such as the one at Dinorwig in North Wales comprising 6 x 315-MW synchronous machines which can be operated as generators or motors. Synchronous motors are more expensive to install than induction motors and are only found in relatively small numbers in industry where there is a requirement both for a constant-speed drive and the ability of reactive power control.
If inverter-fed they can be used in high-speed variable speed drives for traction applications. Small single-phase synchronous motors have been widely used to provide a timing mechanism for processes such as washing machine cycles. A permanent magnet synchronous machine, usually termed as a DC brushless machine, serves as a basis for numerous high performance servo applications for machine tools and industrial robots. The objective of this module is to look at synchronous machines as a central part of a power generation system. In this sense, the following sections will discuss only the fundamental theory of classical synchronous generators and not the machine operating characteristics in motoring mode.
#quetunnel diode stion..
2's Complement Multiplication Two's complement multiplication follows the similar rules as binary multiplication. For illustration, (-4) × 4 = (-16) 1111
Q. Consider the common-source JFET circuit shown in Figure with ?xed bias. Sketch the sinusoidal variations of drain current, drain voltage, and gate voltage superimposed on the di
Connection of Shunt Capacitors - Across Individual Customers The most appropriate manner of improving PF of the distribution system and thereby reducing line losses is to link
discuss the generator action in a dc motor
Illustrate the construction and working of:- (i) Pressure Thermometer (ii) Selective Radiation Pyrometer (iii) Thermistor (iv) Laws of Thermocouple
Q Determine the effective input noise temperature of a long piece of waveguide (that connects an antenna to a receiver) with a loss of 3.4 dB at 12 GHz and a physical temperature o
Variable Frequency Systems In this systems the chopping period T will varying but either Ton is kept constant or T off kept constant. In any case the off time T off w
ppt needed
Explain Thermoplastic materials. Thermoplastic materials: The properties of such plastic materials do not change considerably when they are melted and after that cooled and s
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd