Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Explain the Synchronous Machines?
A synchronous machine, unlike an induction (or asynchronous) machine, only develops torque at a fixed, so called, synchronous speed - ns which is related to the supply frequency f and the number of pole-pairs p as follows:
ns = 60 . f / p
The main application of a synchronous machine is as a generating device for the bulk conversion of mechanical energy (from a gas, steam or water turbine or a diesel engine) to electrical energy. It is therefore found in all types of power generating stations and also standby generating plants. In the case of a steam plant, the machine is often referred to as a turbo-generator, turbine generator or turbo-alternator. Electrical machines are in general reversible in nature meaning that they are capable of operating both as a motor and as a generator. In this sense, the synchronous machine is no exception. A good example of this are pumped-storage hydro-electric schemes such as the one at Dinorwig in North Wales comprising 6 x 315-MW synchronous machines which can be operated as generators or motors. Synchronous motors are more expensive to install than induction motors and are only found in relatively small numbers in industry where there is a requirement both for a constant-speed drive and the ability of reactive power control.
If inverter-fed they can be used in high-speed variable speed drives for traction applications. Small single-phase synchronous motors have been widely used to provide a timing mechanism for processes such as washing machine cycles. A permanent magnet synchronous machine, usually termed as a DC brushless machine, serves as a basis for numerous high performance servo applications for machine tools and industrial robots. The objective of this module is to look at synchronous machines as a central part of a power generation system. In this sense, the following sections will discuss only the fundamental theory of classical synchronous generators and not the machine operating characteristics in motoring mode.
Q. Illustrate working of Direct-coupled Amplifiers? Direct-coupled Amplifiers : The following figure shows a direct-coupled amplifier consisting of two stages. A dc voltage i
Q. What do you mean by interference? An information-bearing signal often becomes contaminated by externally generated interference and noise and/or by internally generated nois
What are the broad principals that will be applied in product design to facilitate automated assembly ?
Q. Basic definition of electromagnetism? A basic understanding of electromagnetism is essential to the study of electrical engineering because it is the key to the operation of
Q. A 10-turn square coil of side 200 mm is mounted on a cylinder 200 mm in diameter. If the cylinder rotates at 1800 r/min in a uniform 1.2-T field, determine the maximum value of
derive relation for hybriod pera meters
Explain current divider rule Current flow through at every resistor that connected by parallel can be find by using current divider rules (CDR).
Selection of Right- Flex : It is also important that the flex we choose is appropriate to the appliance used. Like fuses, the cables and flexes are also rated according to their
how to implement monostable delay in matlab simulink environment? [email protected]
Q. Explain the frequency response curve of a RC coupled amplifier The frequency response curve of a typical RC coupled Amplifier is shown below: In mid frequency range
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd