Explain the scan-line algorithm, Data Structure & Algorithms

Assignment Help:

Explain the Scan-Line Algorithm

This image-space method for removing hidden surfaces is an extension of the scan-line algorithm for filling polygon interiors. Instead of filling just one surface, we now deal with multiple surfaces. As each scan line is processed, all polygon surfaces intersecting that line are examined to determine which are visible. Across each scan line, depth calculations are made for each overlapping surface to determine which is nearest to the view plane. When the visible surface has been determined, the intensity value for that position is entered into the refresh buffer.

We assume that tables are set up for the various surfaces, which include both an edge table and a polygon table. The edge table contains coordinate end points for each line in the scene, the inverse slope of each line, and pointers into the polygon table to identify the surfaces bounded by each line. The polygon table contains coefficients of the plane equation for each surface, intensity information for the surfaces, and possibly pointers into the edge table. To facilitate the search for surfaces crossing a given scan line, we can set up an active list of edges from information in the edge table. This active list will contain only edges that cross the current scan line, sorted in order of increasing x. In addition, we define a flag for each surface that is set on or off to indicate whether a position along a scan line is inside or outside of the surface. Scan lines are processed from left to right. At the leftmost boundary of a surface, the surface flag is turned on; and at the rightmost boundary, it is turned off.  Figure 3.6 illustrates the scan-line method for locating visible portions of surface for pixel positions along the line. The active list for scan line 1 contains information from the edge table for edges AB and BC, only the flag for surface S1 is on. Therefore, no depth calculations are necessary, and intensity information for surface S1 is entered from the polygon table into the refresh buffer. Similarly, between edges EH and FG, only the flag for surface S2 is on. No other positions along scan line 1 intersect surfaces, so the intensity values in the other areas are set to the background intensity. The background \intensity can be loaded throughout the buffer in an initialization routine. 

For scan lines 2 and 3 in Figure, the active edge list contains edges AD, EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the flag for surface S1 is on. But between edges EH and BC, the flags for both surfaces are on. In this interval, depth calculations must be made using the plane coefficients for the two surfaces. For this example, the depth of surface S1 is assumed to be less than that of S2, so intensities for surface S1 are loaded into the refresh buffer until boundary BC is encountered. Then the flag for surface S1 goes off, and intensities for surface S2, so intensities for surface S1 are loaded into the refresh buffer until boundary BC is encountered. Then the flag for surface S1 goes off, and intensities for surface S2 are stored until edge FG is passed. 

We can take advantage of coherence along the scan lines as we pass from one scan line to the next. In Figure 3.6, scan line 3 has the same active list of edges as scan line 2. Since no changes have occurred in line intersections, it is unnecessary again to make depth calculations between edges EH and BC. The two surfaces must be in the same orientation as determined on scan line 2, so the intensities for surface S1 can be entered without further calculations.

 

688_data structure.png


Related Discussions:- Explain the scan-line algorithm

Algorithms, 2. Write a note on i) devising ii) validating and...

2. Write a note on i) devising ii) validating and iii) testing of algorithms.

Algorithm and flow chart, algorithm and flow chart to find weather the give...

algorithm and flow chart to find weather the given numbers are positive or negative or neutral

Two-dimensional array, Two-dimensional array is shown in memory in followin...

Two-dimensional array is shown in memory in following two ways:  1.  Row major representation: To achieve this linear representation, the first row of the array is stored in th

Threaded Binary Tree, If a node in a binary tree is not containing left or ...

If a node in a binary tree is not containing left or right child or it is a leaf node then that absence of child node can be represented by the null pointers. The space engaged by

Question, A binary search tree is used to locate the number 43. Which of th...

A binary search tree is used to locate the number 43. Which of the following probe sequences are possible and which are not? Explain. (a) 61 52 14 17 40 43 (b) 2 3 50 40 60 43 (c)

Define tractable and intractable problems, Define tractable and intractable...

Define tractable and intractable problems Problems that can be solved in polynomial time are known as tractable problems, problems that cannot be solved in polynomial time are

Parallel implementation of the raytracer, You are supposed to do the follow...

You are supposed to do the following: Write a parallel implementation of the raytracer using pthreads. Measure and compare the execution times for (i) the sequential ver

Insertion of a node into an avl tree, Initially Nodes are inserted in an AV...

Initially Nodes are inserted in an AVL tree in the same manner as an ordinary binary search tree. Though, the insertion algorithm for any AVL tree travels back along with the pa

Tree, tree is graph or not

tree is graph or not

Array vs. ordinary variable, Q. Describe what do you understand by the term...

Q. Describe what do you understand by the term array? How does an array vary from an ordinary variable? How are the arrays represented in the specific memory?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd