Explain new terms for describing motion, Physics

Assignment Help:

Explain New Terms for Describing Motion

As mentioned in the last chapter, the mass of a cannonball is a measure of the amount of matter (in kilograms) that would balance against it on a double pan balance. Inertia is the tendency of any object to keep moving once it starts moving and its tendency to stay at rest when it starts at rest. Mass is a measure of inertia or "laziness" that an object exhibits when you try to start it , stop it, or in any way change its motion. The more mass, the more inertia or "laziness", and if an object has less mass, it has less inertia.

1265_New Terms for Describing Motion.png

To describe motion, we have to be able to say how far something has moved. So we have a standard distance called the meter. Actually, the standard meter was originally a metal bar whose length was defined to be exactly 1 meter. This bar is kept in a safe in France and used to make other bars that are the same length. These secondary standards are then sent to different areas of the world for use to make further rulers with various levels of accuracy.  More recently we use atomic standards to define a meter that can be reproduced in any fairly sophisticated modern laboratory.

Part of describing how far a cannonball moves is describing its position. If you start at a point you choose to be "0," and a cannonball is 4 meters to the right of "0," you have defined a position vector of length 4 meters and direction to the right (+4 m), which points to the position of the cannonball.

The choice of "0" gives you the frame of reference that you will use in the problem. All positions will be measured with respect to this "0." Also, later the speed will be measured with respect to this "0" being still. If you choose your frame of reference to be the room that you are making the measurements in, and the "0" to be the zero line on the meter stick, you will be making all later measurements compared to the original position of zero on the meter stick and the speed and acceleration will be with respect to the room since we take the room as our stationary frame of reference. We could, not quite as easily, take our frame of reference for our measurements to be the center of the earth and we would then have to take into account the rotation of the room with respect to the center of the earth. But in the end the observed motion is the same with respect to the room and changing the frame of reference will not change the motion that is performed in the room.

If the cannonball moves from +4 meters to +7 meters and we treat the line along which the cannonball is moving as the x axis, its displacement vector, in moving from the first position x1 = +4 m to the second position x2 = +7 m is the change in position vector:

Δd = X2 - X1

It has a length of:

Δs = x2 - x1 = 7m - 4m = 3m

which tells you that the cannonball moved a distance of 3 meters, and is pointed to the right, so that cannonball moved towards the right, Δd = +3 m.

Next we need to be able to describe how fast the cannonball is moving. The velocity vector, is made up of the cannonball's speed and direction of motion. Speed is calculated as

Speed = Δs/ Δt

where Δs is the distance moved in meters, Δt is the time taken to move in seconds, and speed (this is an average value over Δt) is calculated in m/s. When the direction is included,

Velocity  vector = v = Δd/ Δt

 Where Δd is the displacement vector in meters and Δt is the time taken to move in seconds and velocity vector is in m/s.

If it took the cannonball 3 seconds to move from position 1 to position 2, its average velocity was

V= Δd/ Δt = + 3m/3s = +1m/s

Next, if the velocity vector is changing, we need to be able to describe how fast the velocity changes, how fast the cannonball is speeding up (positive acceleration) or slowing down (negative acceleration) or changing direction. The acceleration vector is:

Acceleration vector = a = Δv/ Δt = v2-v1/ Δt

where the cannonball speeds up from v1 to v2 (in m/s), in a time Δt (in seconds) and the acceleration (an average value over Δt) comes in m/s2.

If the cannonball had started at rest 2 seconds before it reached +3 m, what average acceleration did it undergo?

a = v2-v1/ Δt = +1m/s - (+0m/s) / 2s = +0.5 m/s2


Related Discussions:- Explain new terms for describing motion

Doppler effect, 1. Fill a sink or bath tub with water. 2. Practice tappi...

1. Fill a sink or bath tub with water. 2. Practice tapping the cork on the surface of the water (about 3 _times per second works well) to create evenly spaced waves. 3. Tappi

Specific heat, why specific heat is different at different temperature?

why specific heat is different at different temperature?

Image of this object formed in concave mirror-wave optics, The focal length...

The focal length of a concave mirror is 2 meters. An object is positioned 8 meters in front of the mirror. Where is the image of this object formed? Ans: The image of given ob

Interfacial polarization, Interfacial polarization takes place whenever the...

Interfacial polarization takes place whenever there is an storage of charge at an interface between two materials or between two regions in a material. As shown in the material ha

Define term echo, Echo: The sound heard after reflection from an obstac...

Echo: The sound heard after reflection from an obstacle is known as echo.

Briefly explain brewsters law, Briefly explain Brewster's law? Show that at...

Briefly explain Brewster's law? Show that at the polarizing angle of incidence the reflected and transmitted light becomes perpendicular to each other.

Evaluate the final angular speed of the carousel, As seen from above, a pl...

As seen from above, a playground carousel is rotating counterclockwise about its center on frictionless bearings. A person standing still on the ground grabs onto one of the bars o

Define some characteristics of standing waves, (1) Standing pulse can be lo...

(1) Standing pulse can be longitudinal / transverse. (2) The disturbance confined to a particular part among the starting point and reflecting point of the ray. (3) There is

Michelson interferometer, how Michelson interferometer can be used to measu...

how Michelson interferometer can be used to measure the wavelength of sodium light.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd