Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Q. Explain Multiplexing Systems?
A multiplexing system is one in which two or more signals are transmitted jointly over the same transmission channel. There are two commonly used methods for signal multiplexing. In frequency-division multiplexing (FDM), various signals are translated to nonoverlapping frequency bands. The signals are demultiplexed for individual recovery by bandpass filtering at the destination. FDM may be used with either analog or discrete signal transmission. Time - division multiplexing (TDM), on the other hand, makes use of the fact that a sampled signal is off most of the time and the intervals between samples are available for the insertion of samples from other signals. TDM is usually employed in the transmission of discrete information. Let us now describe basic FDM and TDM systems.
Figure (a) shows a simple FDM system which is used in telephone communication systems. Each input is passed through a low-pass filter (LPF) so that all frequency components above 3 kHz are eliminated. It is then modulated onto individual subcarriers with 4-kHz spacing. While all subcarriers are synthesized from a master oscillator, the modulation is achieved with single sideband (SSB). The multiplexed signal, with a typical spectrum as shown in Figure (b), is formed by summing the SSB signals and a 60-kHz pilot carrier. The bandpass filters (BPFs) at the destination separate each SSB signal for product demodulation. Synchronization is achieved by obtaining the local oscillator waveforms from the pilot carrier. Telephone signals are often multiplexed in this fashion.
A basic TDM system is illustrated in Figure (a). Let us assume for simplicity that all three input signals have equal bandwidths W. A commutator or an electronic switch subsequently obtains a sample from each input every Ts seconds, thereby producing a multiplexed waveform with interleaved samples, as shown in Figure (b). Another synchronized commutator at the destination isolates and distributes the samples to a bank of low-pass filters (LPFs) for individual signal reconstruction.More sophisticated TDM systems are available inwhich the sampled values are converted to pulse modulation prior to multiplexing and carrier modulation is included after multiplexing. Integrated switching circuits have made the TDM implementation much simpler than FDM.
Design a low noise amplifier using an Infineon RF transistor BFP640. The amplifier is to be used to amplify the L2 GPS signal and so the centre frequency is 1227MHz and bandwidth 4
What is the use of ALE The ALE is used to latch the lower order address so that it can be available in T2 and T3 and used for identify the memory address. During T1 the ALE goe
B-H curve of SM2CO17
If aluminium and copper pipes are of same length and diameter ... same magnet dropped through them...in copper it takes more time to come out of other end, i myself have done this.
Execution of Digital Logic Circuits A safety circuit is employed on a lathe to prevent the motor turning if it is not safe to operate. A series of 2 switches are used to check
RIM is Read Interrupt Mask. Used to ensure whether the interrupt is Masked or not. SIM is Set Interrupt Mask. Used to mask the hardware interrupts.
Q. (a) Consider a diode circuit with RC load as shown in Figure. With the switch closed at t = 0 and with the initial condition at t = 0 that vC = 0, obtain the functional forms of
Consider an electromagnet, as shown in Figure, which is used to support a solid piece of steel and is excited by a coil of N = 1000 turns carrying a current i = 1.5 A. The cross-se
Develop and execute a PSpice program to solve for the current I 2 in Figure.
the p.u. reactance of a 25 MVA, 13.2 kV alternator 0.5 p.u. On a base of 50 MVA and 13.8 KV the p.u. value shall be
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd