Explain missing values, Advanced Statistics

Assignment Help:

Missing values: The observations missing from the set of data for some of the reason. In longitudinal studies, for instance, they might occur because subjects drop out of the study completely or do not appear for one or other of scheduled visits or because of the equipment failure. The common causes of subjects prematurely ceasing to participate include the recovery, lack of improvement, the unwanted signs or symptoms that might be related to the investigational treatment, unlikeable study procedures and the intercurrent health problems. Such values greatly complicate number of methods of analysis and simply using those individuals for whom data are complete can be unsatisfactory in number of situations. A distinction can be made between the values missing completely at random (MCAR), missing at random (MAR) and the non-ignorable (or informative).

The MCAR variety arise when the individuals drop out of study in a process which is independent of the observed measurements and those that would have been available had they not been missing both; here the observed values effectively constitute the simple random sample of the values for all study subjects. Random drop-out (MAR) happens when the dropout process depends on the outcomes which have been observed in the past, but given this information is conditionally independent of all future (which is unrecorded) values of the outcome variable following the drop-out. At last, in the case of informative drop-out, the drop-out process depends upon the unobserved values of the result variable. It is the latter which cause most the problems for the analysis of data comprising missing values.


Related Discussions:- Explain missing values

Follow back surveys, Surveys which use lists related with the vital statist...

Surveys which use lists related with the vital statistics to sample individuals for the further information. For instance, the 1988 National Mortality Follow back Survey sampled de

Dirichlet process, The distribution over distributions in the sense that ea...

The distribution over distributions in the sense that each draw from the process is itself the distribution. The name Dirichlet process or procedure is due to the fact that the ?ni

Explain perturbation theory, Perturbation theory : The theory useful in ass...

Perturbation theory : The theory useful in assessing how well a specific algorithm or the statistical model performs when the observations suffer less random changes. In very commo

Estimation, The process of providing the numerical value for the population...

The process of providing the numerical value for the population parameter on the basis of information gathered from a sample. If a single ?gure is computed for the unknown paramete

Residual plots, Residual plots are the plots of some type of residual whi...

Residual plots are the plots of some type of residual which might be helpful in assessing the assumption made by the fitted model. In regression analysis there are various method

Historigram, difference between histogram and historigram

difference between histogram and historigram

Computer-intensive methods, Computer-intensive methods : The statistical me...

Computer-intensive methods : The statistical methods which require almost identical computations on the data repeated number of times. The term computer intensive is, certainly, a

Explain randomized response technique, Randomized response technique : The ...

Randomized response technique : The procedure for collecting the information on sensitive issues by means of the survey, in which an element of chance is introduced as to what quer

Conjoint analysis, Conjoint analysis : The method used basically in market ...

Conjoint analysis : The method used basically in market research which is similar in many respects to the various dimensional scaling. The method attempts to assign values to the l

Breusch-pagan test, The Null Hypothesis - H0:  There is no heteroscedastici...

The Null Hypothesis - H0:  There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if Q = ESS/2  >

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd