Explain missing values, Advanced Statistics

Assignment Help:

Missing values: The observations missing from the set of data for some of the reason. In longitudinal studies, for instance, they might occur because subjects drop out of the study completely or do not appear for one or other of scheduled visits or because of the equipment failure. The common causes of subjects prematurely ceasing to participate include the recovery, lack of improvement, the unwanted signs or symptoms that might be related to the investigational treatment, unlikeable study procedures and the intercurrent health problems. Such values greatly complicate number of methods of analysis and simply using those individuals for whom data are complete can be unsatisfactory in number of situations. A distinction can be made between the values missing completely at random (MCAR), missing at random (MAR) and the non-ignorable (or informative).

The MCAR variety arise when the individuals drop out of study in a process which is independent of the observed measurements and those that would have been available had they not been missing both; here the observed values effectively constitute the simple random sample of the values for all study subjects. Random drop-out (MAR) happens when the dropout process depends on the outcomes which have been observed in the past, but given this information is conditionally independent of all future (which is unrecorded) values of the outcome variable following the drop-out. At last, in the case of informative drop-out, the drop-out process depends upon the unobserved values of the result variable. It is the latter which cause most the problems for the analysis of data comprising missing values.


Related Discussions:- Explain missing values

Describe martingale, Martingale: In the gambling context the term at first...

Martingale: In the gambling context the term at first referred to a system for recouping losses by doubling the stake after each loss has occured. The modern mathematical concept

Last observation carried forward, Last observation carried forward is a te...

Last observation carried forward is a technique for replacing the observations of the patients who drop out of the clinical trial carried out over a time period. It consists of su

Define non linear mapping (nlm), Non linear mapping (NLM ) is a technique f...

Non linear mapping (NLM ) is a technique for obtaining a low-dimensional representation of the set of multivariate data, which operates by minimizing a function of the differences

Incidental parameter problem, Incidental parameter problem is a problem wh...

Incidental parameter problem is a problem which sometimes occurs when the number of parameters increases in the tandem with the number of observations. For instance, models for pa

Define kalman filter, Kalman filter : A recursive procedure which gives an ...

Kalman filter : A recursive procedure which gives an estimate of the signal when only the 'noisy signal' can be observed. The estimate is efficiently constructed by putting the exp

Generalized linear models, Introduction to Generalized Linear Models (GLM) ...

Introduction to Generalized Linear Models (GLM) We introduce the notion of GLM as an extension of the traditional normal-theory-based linear regression models. This will be very

Define kappa coefficient, Kappa coefficient : The chance corrected index of...

Kappa coefficient : The chance corrected index of the agreement between, for instance, judgements and diagnoses made by the two raters. Calculated as the ratio of the noticed exces

Decision tree analysis, Ask questioThe finance manager of ‘Softy’ baby soap...

Ask questioThe finance manager of ‘Softy’ baby soap manufacturing company being successful in the first two years of the company’s operations is considering setting up another plan

Blinding, Blinding : A procedure used in clinical trials to get rid of the ...

Blinding : A procedure used in clinical trials to get rid of the possible bias which might be introduced if the patient and/or the doctor knew which treatment the patient is receiv

Mean, You have learned that there are 3 major central measures of any data ...

You have learned that there are 3 major central measures of any data set. Namely: mean, median, and mode. Which of the three, do the outliers affect the most?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd