Explain missing values, Advanced Statistics

Assignment Help:

Missing values: The observations missing from the set of data for some of the reason. In longitudinal studies, for instance, they might occur because subjects drop out of the study completely or do not appear for one or other of scheduled visits or because of the equipment failure. The common causes of subjects prematurely ceasing to participate include the recovery, lack of improvement, the unwanted signs or symptoms that might be related to the investigational treatment, unlikeable study procedures and the intercurrent health problems. Such values greatly complicate number of methods of analysis and simply using those individuals for whom data are complete can be unsatisfactory in number of situations. A distinction can be made between the values missing completely at random (MCAR), missing at random (MAR) and the non-ignorable (or informative).

The MCAR variety arise when the individuals drop out of study in a process which is independent of the observed measurements and those that would have been available had they not been missing both; here the observed values effectively constitute the simple random sample of the values for all study subjects. Random drop-out (MAR) happens when the dropout process depends on the outcomes which have been observed in the past, but given this information is conditionally independent of all future (which is unrecorded) values of the outcome variable following the drop-out. At last, in the case of informative drop-out, the drop-out process depends upon the unobserved values of the result variable. It is the latter which cause most the problems for the analysis of data comprising missing values.


Related Discussions:- Explain missing values

Hirap, #q A paper mill products two grade of paper viz., X & Y. Because of ...

#q A paper mill products two grade of paper viz., X & Y. Because of raw material restriction, it cannot produce more than 400 tons of grade X paper & 300 tons of grade Y paper in a

Clinical vs. statistical significance, Clinical vs. statistical significanc...

Clinical vs. statistical significance : The distinction among results in terms of their possible clinical importance rather than simply in terms of their statistical importance. Wi

Hosmer-lemeshow test, Hosmer-Lemeshow test is a goodness-of-fit test taken...

Hosmer-Lemeshow test is a goodness-of-fit test taken in use in logistic regression, particularly when there are regular covariates. Units are spitted into deciles based on predict

Mendelian randomization, Mendelian randomization is the term applied to th...

Mendelian randomization is the term applied to the random assortment of alleles at the time of gamete formation, a process which results in the population distributions of genetic

Linked micro map plot, Linked micro map plot is a plot which provides the ...

Linked micro map plot is a plot which provides the graphical overview and the details for spatially indexed statistical summaries. The plot shows the spatial patterns and statisti

Data mining, The non-trivial extraction of implicit, earlier unknown and po...

The non-trivial extraction of implicit, earlier unknown and potentially useful information from data, specifically high-dimensional data, using pattern recognition, artificial inte

Parks test, The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedastici...

The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists The Alternative Hypothesis - H1: β 1 ≠ 0 i.e. there is no homoscedasti

Explain Grade of membership model, Grade of membership model: This is the ...

Grade of membership model: This is the general distribution free method for the clustering of the multivariate data in which only categorical variables are included. The model ass

Data reduction, The method of summarizing the large amounts of data by form...

The method of summarizing the large amounts of data by forming the frequency distributions, scatter diagrams, histograms, etc., and calculating statistics like means variances and

White''s general heteroscedasticity test, The Null Hypothesis - H0:  γ 1 =...

The Null Hypothesis - H0:  γ 1 = γ 2 = ...  =  0  i.e.  there is no heteroscedasticity in the model The Alternative Hypothesis - H1:  at least one of the γ i 's are not equal

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd