Explain missing values, Advanced Statistics

Assignment Help:

Missing values: The observations missing from the set of data for some of the reason. In longitudinal studies, for instance, they might occur because subjects drop out of the study completely or do not appear for one or other of scheduled visits or because of the equipment failure. The common causes of subjects prematurely ceasing to participate include the recovery, lack of improvement, the unwanted signs or symptoms that might be related to the investigational treatment, unlikeable study procedures and the intercurrent health problems. Such values greatly complicate number of methods of analysis and simply using those individuals for whom data are complete can be unsatisfactory in number of situations. A distinction can be made between the values missing completely at random (MCAR), missing at random (MAR) and the non-ignorable (or informative).

The MCAR variety arise when the individuals drop out of study in a process which is independent of the observed measurements and those that would have been available had they not been missing both; here the observed values effectively constitute the simple random sample of the values for all study subjects. Random drop-out (MAR) happens when the dropout process depends on the outcomes which have been observed in the past, but given this information is conditionally independent of all future (which is unrecorded) values of the outcome variable following the drop-out. At last, in the case of informative drop-out, the drop-out process depends upon the unobserved values of the result variable. It is the latter which cause most the problems for the analysis of data comprising missing values.


Related Discussions:- Explain missing values

Quality control procedures, Quality control procedures is the statistical ...

Quality control procedures is the statistical process designed to ensure that the precision and accuracy of, for instance, a laboratory test, are maintained within the acceptable

Please answer this question, How large would the sample need to be if we ar...

How large would the sample need to be if we are to pick a 95% confidence level sample: (i) From a population of 70; (ii) From a population of 450; (iii) From a population of 1000;

Construct a stem-and-leaf diagram, The number of employees absent from work...

The number of employees absent from work at a large electronics manufacturing plant over aperiod of 106 days is given in the table below. 146 141 139 140 145 141 142 131 142 140

Current status data, The Current status data arise in the survival analysis...

The Current status data arise in the survival analysis if the observations are limited to the indicators of whether or not the event of interest has happened at the time the sample

Correspondence analysis, The method or technique for displaying the relatio...

The method or technique for displaying the relationships between categorical variables in a type of the scatter plot diagram. For two this type of variables displayed in the form o

Describe indirect least squares, Indirect least squares: An estimation tech...

Indirect least squares: An estimation technique used in the fitting of structural equation models. Commonly least squares are first used to estimate reduced form parameters. Usi

Extrapolation, This process of estimating from a data set those values lyin...

This process of estimating from a data set those values lying beyond range of the data. In the regression analysis, for instance, a value of the response variable might be estimate

Quantile regression, Quantile regression is an extension of the classical ...

Quantile regression is an extension of the classical least squares from estimation of the conditional mean models to the estimation of the variety of models for many conditional q

Factor rotation, Generally the final stage of an exploratory factor analysi...

Generally the final stage of an exploratory factor analysis in which factors derived initially are transformed to build their interpretation simpler. Generally the target of the pr

Logistic regression - computing log odds without probabiliti, Please help w...

Please help with following problem: : Let’s consider the logistic regression model, which we will refer to as Model 1, given by log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd