Explain longitudinal data, Advanced Statistics

Assignment Help:

Longitudinal data: The data arising when each of the number of subjects or patients give rise to the vector of measurements representing same variable observed at the number of different time instants.

This type of data combines elements of the multivariate data and time series data. They differ from the previous, however, in that only a single variable is involved, and from the latter in consisting of a large number of short series, one from the each subject, rather than single long series. This kind of data can be collected either prospectively, following subjects forward in time, or the retrospectively, by extracting measurements on each person from historical records. This kind of data is also often called as repeated measures data, specifically in the social and behavioural sciences, though in these disciplines such data are more likely to occur from observing individuals repeatedly under different experimental conditions rather than from a simple time sequence. Special statistical techniques are often required for the analysis of this type of data because the set of measurements on one subject tend to be intercorrelated. This correlation should be taken into account to draw the valid scientific inferences. The design of most of the studies specifies that all the subjects are to have the same number of the repeated measurements made at the equivalent time intervals. Such data is usually referred to as the balanced longitudinal data. But though the balanced data is generally the target, unbalanced longitudinal data in which subjects might have different numbers of repeated measurements made at the differing time intervals, do arise for the variety of reasons. Sometimes the data are unbalanced or incomplete by the design; an investigator might, for instance, choose in advance to take the measurements every hour on one half of the subjects and every two hours on other half.

In general, though, the major reason for the unbalanced data in a longitudinal study is occurrence of missing values in the sense that the intended measurements are not taken, are lost or are otherwise not available.


Related Discussions:- Explain longitudinal data

Explain missing values, Missing values : The observations missing from the ...

Missing values : The observations missing from the set of data for some of the reason. In longitudinal studies, for instance, they might occur because subjects drop out of the stud

Outliers - reasons for screening data, Outliers - Reasons for Screening Dat...

Outliers - Reasons for Screening Data Outliers are due to data entry errors, subject is not a member of the population that the sample is trying to represent, or the subject i

Environmental statistics, The procedures used for determining how the quali...

The procedures used for determining how the quality of life is affected by the environment, in particular by factors such as air and solid wastes, water pollution, hazardous substa

Chain-binomial models, Chain-binomial models : Models arising in mathematic...

Chain-binomial models : Models arising in mathematical theory of the quite infectious diseases, which postulate that at any stage in the epidemic there are a certain number of the

Define radical statistics group, Radical statistics group : The national ne...

Radical statistics group : The national network of the social scientists in United Kingdom committed to the critique of statistics as taken in use in the policy making procedure. T

Computer-intensive methods, Computer-intensive methods : The statistical me...

Computer-intensive methods : The statistical methods which require almost identical computations on the data repeated number of times. The term computer intensive is, certainly, a

Fractional factorial design, Designs in which the information on main effec...

Designs in which the information on main effects and low-order inter- actions are attained by running only the fraction of the complete factorial experiment and supposing that part

Average age at death, Average age at death : A ?awed statistic summarizing ...

Average age at death : A ?awed statistic summarizing expectancy of the life and other aspects of the mortality. For instance, a study comparing average age at the death for male sy

Explain yate s'' continuity correction, Yate s' continuity correction : Whe...

Yate s' continuity correction : When the testing for independence in contingency table, a continuous probability distribution, known as chi-squared distribution, is used as the app

Alternative hypothesis, The Null Hypothesis - H0: β0 = 0, H0: β 1 = 0, H...

The Null Hypothesis - H0: β0 = 0, H0: β 1 = 0, H0: β 2 = 0, Β i = 0 The Alternative Hypothesis - H1: β0 ≠ 0, H0: β 1 ≠ 0, H0: β 2 ≠ 0, Β i ≠ 0      i =0, 1, 2, 3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd