Explain longitudinal data, Advanced Statistics

Assignment Help:

Longitudinal data: The data arising when each of the number of subjects or patients give rise to the vector of measurements representing same variable observed at the number of different time instants.

This type of data combines elements of the multivariate data and time series data. They differ from the previous, however, in that only a single variable is involved, and from the latter in consisting of a large number of short series, one from the each subject, rather than single long series. This kind of data can be collected either prospectively, following subjects forward in time, or the retrospectively, by extracting measurements on each person from historical records. This kind of data is also often called as repeated measures data, specifically in the social and behavioural sciences, though in these disciplines such data are more likely to occur from observing individuals repeatedly under different experimental conditions rather than from a simple time sequence. Special statistical techniques are often required for the analysis of this type of data because the set of measurements on one subject tend to be intercorrelated. This correlation should be taken into account to draw the valid scientific inferences. The design of most of the studies specifies that all the subjects are to have the same number of the repeated measurements made at the equivalent time intervals. Such data is usually referred to as the balanced longitudinal data. But though the balanced data is generally the target, unbalanced longitudinal data in which subjects might have different numbers of repeated measurements made at the differing time intervals, do arise for the variety of reasons. Sometimes the data are unbalanced or incomplete by the design; an investigator might, for instance, choose in advance to take the measurements every hour on one half of the subjects and every two hours on other half.

In general, though, the major reason for the unbalanced data in a longitudinal study is occurrence of missing values in the sense that the intended measurements are not taken, are lost or are otherwise not available.


Related Discussions:- Explain longitudinal data

Explain Genetic algorithms, Genetic algorithms: The optimization events mo...

Genetic algorithms: The optimization events motivated by the biological analogies. The prime idea is to try to mimic the 'survival of the fittest' rule of the genetic mutation in

Cauchy integral, Cauchy integral : The integral of the function, f (x), fro...

Cauchy integral : The integral of the function, f (x), from a to b are de?ned in terms of the sum   In the statistics this leads to the below shown inequality for the expecte

Disclosure risk, The risk of being able to recognize the respondent's confi...

The risk of being able to recognize the respondent's confidential information in the data set. Number of approaches has been proposed to measure the disclosure risk some of which c

Zero-inflated poisson regression, Zero-inflated Poisson regression is  the...

Zero-inflated Poisson regression is  the model for count data with the excess zeros. It supposes that with probability p the only possible observation is 0 and with the probabilit

Hanging rootogram, Hanging rootogram is   he diagram comparing the observe...

Hanging rootogram is   he diagram comparing the observed rootogram with the ?tted curve, in which dissimilarities between the two are displayed in relation to the horizontal axis,

Gauss markov theorem, This is the theorem which states that if the error te...

This is the theorem which states that if the error terms in a multiple regression have the same variance and are not corrected, then the estimators of the parameters in the model p

Explain multicentre study, Multicentre study : The clinical trial conducte...

Multicentre study : The clinical trial conducted simultaneously in the number of participating hospitals, with all centres following an agreed-upon study of the protocol and with

Copulas, Invariant transformations to combine marginal probability function...

Invariant transformations to combine marginal probability functions to form multivariate distributions motivated by the need to enlarge the class of multivariate distributions beyo

Command-line options, Command-Line options Compression: C++:  ./comp...

Command-Line options Compression: C++:  ./compress  -f  myfile.txt  [-o  myfile.hzip  -s Java:  sh  compress.sh  -f  myfile.txt  [-o  myfile.hzip  -s] Decompression:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd