Explain identifying conic sections, Mathematics

Assignment Help:

Explain Identifying Conic Sections

The graph of a quadratic equation in the variables x and y, like this one,
x2 + 3y2 + 6y = -4, is a conic sections. There are three kinds of conic section:
• hyperbola (a pair of bent lines)
• parabola ( a single bent line)
• ellipse ( a bent circle).

You can identify these three types just by looking at the equation.
Hyperbolas have equations with both an x2 and a y2 term, and there terms have opposite signs (when written on the same side of the equation). Here are three examples:
x2 - y2 = 1
-2x2 + x + y2 = 0
x2 + y =2 + y2
And this is what the graph of a typical hyperbola looks like:


Note that if the squared terms in the third example were moved to the same side of the equation, they would have opposite signs.

2362_Hyperbolas.png

Ellipses also have equations with both an x2 and a y2 term, and these terms have the same sign. Here are three examples of ellipses:
x2 + y2 = 1
-2x2 + x - y2 = 0
x2 + y = 2 - y2
Here is the graph of the first example:

724_Ellipses.png

As you can see, some ellipses- the ones that aren't unevenly scaled- are just circles! Parabolas have equations with only one variable (x or y) squared, but not both.
y = x2
-2x - y2 = 0
x2 + y = 2- y
Graphs of parabolas look something like this:

Note: If the equation has an "xy" term, then you have a rotated conic section. Most calculus courses avoid this somewhat complicated issue, and deal only with non-rotated conics.

1594_Parabolas.png


Related Discussions:- Explain identifying conic sections

How much greater is 0.0543 than 0.002, How much greater is 0.0543 than 0.00...

How much greater is 0.0543 than 0.002? To ?nd out how much greater a number is, you required to subtract; 0.0543 - 0.002 = 0.0523. For subtract decimals and line the numbers up

Laplace transforms, As we saw in the previous section computing Laplace tra...

As we saw in the previous section computing Laplace transforms directly can be quite complex. Generally we just utilize a table of transforms when actually calculating Laplace tran

Estimate the total cost of the books, Frederick bought six books which cost...

Frederick bought six books which cost d dollars each. What is the total cost of the books? Frederick would multiply the number of books, 6, through how much each one costs, d.

Find a minimum cost spanning arborescence rooted, Find a minimum cost spann...

Find a minimum cost spanning arborescence rooted at r for the digraph shown below, using the final algorithm shown in class.  Please show your work, and also give a final diagram w

g ( x ) = 3sec ( x ) -10 cot ( x ) -differentiate , Differentiate followin...

Differentiate following functions.                   g ( x ) = 3sec ( x ) -10 cot ( x ) Solution : There actually isn't a whole lot to this problem.  We'll just differentia

Geometry, Awhat is polygonesk question #Minimum 100 words accepted#

Awhat is polygonesk question #Minimum 100 words accepted#

Find out the minimum distance from the origin, Problem 1. Find the maximum...

Problem 1. Find the maximum and the minimum distance from the origin to the ellipse x 2 + xy + y 2 = 3. Hints: (i) Use x 2 + y 2 as your objective function; (ii) You c

Newtons method , Newton's Method : If x n is an approximation a solution ...

Newton's Method : If x n is an approximation a solution of f ( x ) = 0 and if given by, f ′ ( x n ) ≠ 0 the next approximation is given by

Pairs of straight lines, The equation ax2 + 2hxy + by2 =0 represents a pair...

The equation ax2 + 2hxy + by2 =0 represents a pair of straight lines passing through the origin and its angle is tan q = ±2root under h2-ab/(a+b) and even the eqn ax2+2hxy+by2+2gx+

Geometry, i need help trying make a presentation for my teacher

i need help trying make a presentation for my teacher

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd