Explain identifying conic sections, Mathematics

Assignment Help:

Explain Identifying Conic Sections

The graph of a quadratic equation in the variables x and y, like this one,
x2 + 3y2 + 6y = -4, is a conic sections. There are three kinds of conic section:
• hyperbola (a pair of bent lines)
• parabola ( a single bent line)
• ellipse ( a bent circle).

You can identify these three types just by looking at the equation.
Hyperbolas have equations with both an x2 and a y2 term, and there terms have opposite signs (when written on the same side of the equation). Here are three examples:
x2 - y2 = 1
-2x2 + x + y2 = 0
x2 + y =2 + y2
And this is what the graph of a typical hyperbola looks like:


Note that if the squared terms in the third example were moved to the same side of the equation, they would have opposite signs.

2362_Hyperbolas.png

Ellipses also have equations with both an x2 and a y2 term, and these terms have the same sign. Here are three examples of ellipses:
x2 + y2 = 1
-2x2 + x - y2 = 0
x2 + y = 2 - y2
Here is the graph of the first example:

724_Ellipses.png

As you can see, some ellipses- the ones that aren't unevenly scaled- are just circles! Parabolas have equations with only one variable (x or y) squared, but not both.
y = x2
-2x - y2 = 0
x2 + y = 2- y
Graphs of parabolas look something like this:

Note: If the equation has an "xy" term, then you have a rotated conic section. Most calculus courses avoid this somewhat complicated issue, and deal only with non-rotated conics.

1594_Parabolas.png


Related Discussions:- Explain identifying conic sections

Circle, a wheel revolves 360 deegre revolution in one minute .Find how many...

a wheel revolves 360 deegre revolution in one minute .Find how many radians will the wheel subtend in one second

Greatest common factor, x 4 - 25 There is no greatest common factor her...

x 4 - 25 There is no greatest common factor here.  Though, notice that it is the difference of two perfect squares. x 4 - 25 = ( x 2 ) 2   - (5) 2 Thus, we can employ

Mixing problems, In these problems we will begin with a substance which is ...

In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may

Determine the tangent line to f ( x ) = 15 - 2x2 at x = 1, Determine the t...

Determine the tangent line to f ( x ) = 15 - 2x 2   at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li

Close Figure, What is a close figure in plane?

What is a close figure in plane?

Functions, find the derived functions

find the derived functions

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd