Explain hall effect with hall mobility and hall angle, Electrical Engineering

Assignment Help:

Explain Hall effect.

Consider a slab of material wherein there is a current density J resulting by an applied electric field Ex in the x- direction. The electrons will drift along with an average velocity V‾x in the x direction; while a magnetic field of flux density Bz (wb/m2) is superposed upon the applied electric field in the Z direction the electrons will experience a Lorentz force perpendicular to V‾x and to Bz; the magnitude of this force will be specified by Bz (µx)e.

1737_hall effect1.png

Thus the electrons are driven towards one face in the sample resulting in an excess of electrons near one face and a deficiency of electrons near the other face. These charges will in turn create a counteracting electric field Ey in the y-direction. Ey would build up, till this is of sufficient magnitude to compensate the lorentz force exerted on the electrons because of the magnetic field we may hence write e Ey =Bz e( V‾x ). In steady state, a Hall voltage, VH, is thereby put in the y-direction specified by

VH = Ey .a =Bz (V‾x), a

The current density in the sample is specified with:

Jx = N. e (V‾x)

Here N=number of conduction electrons/m³

The current density can be computed from the total current and the cross section (a x b) of the sample.

Therefore,

Jx = I/a x b = N. e (V‾x)

I = N. e (V‾x) a x b   ....................................(1)

VH = BZ (V‾x) . a    ......................................(2)

Eliminating (V‾x) from equating (1) and (2) we get:

VH = I/(N.e.b)

= (1/N.e) ((BZ.I)/b)

The ratio + (1/N.e) = Ey/(JX.BZ) should be constant.

Another variable that is frequently used to explain the Hall Effect is the ratio of the currents JY to JX.

This is termed as the Hall angle and is denoted with θ θ = JY / JX = σ EY / JX

= σ RH BZ

= µ H BX

Here µ H is termed as the Hall mobility. The hall angle is equal to the average no. of radians traversed through a particle between collisions.


Related Discussions:- Explain hall effect with hall mobility and hall angle

Sketch the waveform of the circuit , The following four output displays of ...

The following four output displays of an oscilloscope (right hand side, below) show waveforms of a biased diode ac circuit. An example is illustrated on the left hand side. VIN is

Induction heating levitation, Using a levitation coil, you levitate a condu...

Using a levitation coil, you levitate a conductive object in the magnetic field and heat within that field. I have 2 sample report and I would like you to write some thing similar

Determine rc and resistance, Q. A silicon npn BJT is biased by the method s...

Q. A silicon npn BJT is biased by the method shown in Figure, with R E = 240 , R 2 = 3000 , and V CC = 24 V. The operating point corresponds to V BEQ = 0.8V, I BQ = 110 µA,

Explain nodes analysis, Nodes analysis Analysis using KCL to solve for ...

Nodes analysis Analysis using KCL to solve for voltages at every common node of the network and as determines the currents by and voltages across every elements of the network.

Function of time base generator, Q. Explain the function of time base gener...

Q. Explain the function of time base generator in CRO. Sol. Oscilloscopes are used to display a waveform that varies as a function of time. If the waveform is to be accuratel

Semiconductors, Charge density I n a semiconductor

Charge density I n a semiconductor

The potential difference at the battery terminals, Ten 1.5V cells in series...

Ten 1.5V cells in series, each cells having an internal resistance of 0.3Ω, are connected series to a load of 25Ω. Determine : i.The current flowing the circuit

What do you mean by negative impedance converter, Q. What do you mean by Ne...

Q. What do you mean by Negative Impedance Converter? The op-amp circuit of Figure causes a negative resistance R in between the input terminal and ground. In the more general

Determine the output waveform of the voltage, Q. The first four harmonics i...

Q. The first four harmonics in the Fourier series of current waveform given by where I m = 15 mA and T = 1 ms. If such a current is applied to a parallel combination of R

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd