Explain hall effect with hall mobility and hall angle, Electrical Engineering

Assignment Help:

Explain Hall effect.

Consider a slab of material wherein there is a current density J resulting by an applied electric field Ex in the x- direction. The electrons will drift along with an average velocity V‾x in the x direction; while a magnetic field of flux density Bz (wb/m2) is superposed upon the applied electric field in the Z direction the electrons will experience a Lorentz force perpendicular to V‾x and to Bz; the magnitude of this force will be specified by Bz (µx)e.

1737_hall effect1.png

Thus the electrons are driven towards one face in the sample resulting in an excess of electrons near one face and a deficiency of electrons near the other face. These charges will in turn create a counteracting electric field Ey in the y-direction. Ey would build up, till this is of sufficient magnitude to compensate the lorentz force exerted on the electrons because of the magnetic field we may hence write e Ey =Bz e( V‾x ). In steady state, a Hall voltage, VH, is thereby put in the y-direction specified by

VH = Ey .a =Bz (V‾x), a

The current density in the sample is specified with:

Jx = N. e (V‾x)

Here N=number of conduction electrons/m³

The current density can be computed from the total current and the cross section (a x b) of the sample.

Therefore,

Jx = I/a x b = N. e (V‾x)

I = N. e (V‾x) a x b   ....................................(1)

VH = BZ (V‾x) . a    ......................................(2)

Eliminating (V‾x) from equating (1) and (2) we get:

VH = I/(N.e.b)

= (1/N.e) ((BZ.I)/b)

The ratio + (1/N.e) = Ey/(JX.BZ) should be constant.

Another variable that is frequently used to explain the Hall Effect is the ratio of the currents JY to JX.

This is termed as the Hall angle and is denoted with θ θ = JY / JX = σ EY / JX

= σ RH BZ

= µ H BX

Here µ H is termed as the Hall mobility. The hall angle is equal to the average no. of radians traversed through a particle between collisions.


Related Discussions:- Explain hall effect with hall mobility and hall angle

Define the general purpose embedded system, Define the general purpose embe...

Define the general purpose embedded system. a. General purpose microprocessor For illustration, Intel 80x86, Motorola 68HCxxx or Sparc b. Embedded general purpose process

What are wired and wireless transmission systems, What are wired and wirele...

What are wired and wireless transmission systems?  Transmission Systems: Modern long distance transmission systems can be placed under three main categories: 1.  Radio Sy

Instrumentation, explain measurement of frqueny and phase using cro

explain measurement of frqueny and phase using cro

Explain the bidirectional shift registers, Explain the Bidirectional Shift ...

Explain the Bidirectional Shift Registers? A Reversible or A Bidirectional shift register is one in which the data can be shift either left or right. D flip-flops are used by

Compute the theoretical and practical frequency, Q. An RG-139/U rectangular...

Q. An RG-139/U rectangular waveguide is given to have dimensions a = 0.8636 mm and b = 0.4318 mm. Compute the theoretical and practical frequency ranges of operation for the guide.

Mid band voltage gain, For the amplifier circuit shown below estimate the m...

For the amplifier circuit shown below estimate the mid band voltage gain if the EARLY voltage (V A ) of the current mirror transistors is 80 volts.  Assume the d.c biasing is optim

Opto couplers, Is there an opto-coupler that has a blocking voltage, VRRM, ...

Is there an opto-coupler that has a blocking voltage, VRRM, of greater than 800 volts? Perhaps, 1200 or 1600 volts? The manufacturer?

Fixed bias with emitter resistor, Fixed bias with emitter resistor: ...

Fixed bias with emitter resistor: Figure: Fixed bias with emitter resistor The fixed bias circuit is changed through attaching an external resistor to the emitter

find the thevenin and norton equivalent circuits, The output port of the o...

The output port of the one-port is defined by terminals A and B. Given: R 1 = 10 k_, R 2 = 20 k_, R 3 = 10 k_, and R 4 = 10 k_ V 1 = 20 V and I1 = 0.8 mA a) Find the T

Transistor, Various compensation techniques

Various compensation techniques

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd