Explain hall effect with hall mobility and hall angle, Electrical Engineering

Assignment Help:

Explain Hall effect.

Consider a slab of material wherein there is a current density J resulting by an applied electric field Ex in the x- direction. The electrons will drift along with an average velocity V‾x in the x direction; while a magnetic field of flux density Bz (wb/m2) is superposed upon the applied electric field in the Z direction the electrons will experience a Lorentz force perpendicular to V‾x and to Bz; the magnitude of this force will be specified by Bz (µx)e.

1737_hall effect1.png

Thus the electrons are driven towards one face in the sample resulting in an excess of electrons near one face and a deficiency of electrons near the other face. These charges will in turn create a counteracting electric field Ey in the y-direction. Ey would build up, till this is of sufficient magnitude to compensate the lorentz force exerted on the electrons because of the magnetic field we may hence write e Ey =Bz e( V‾x ). In steady state, a Hall voltage, VH, is thereby put in the y-direction specified by

VH = Ey .a =Bz (V‾x), a

The current density in the sample is specified with:

Jx = N. e (V‾x)

Here N=number of conduction electrons/m³

The current density can be computed from the total current and the cross section (a x b) of the sample.

Therefore,

Jx = I/a x b = N. e (V‾x)

I = N. e (V‾x) a x b   ....................................(1)

VH = BZ (V‾x) . a    ......................................(2)

Eliminating (V‾x) from equating (1) and (2) we get:

VH = I/(N.e.b)

= (1/N.e) ((BZ.I)/b)

The ratio + (1/N.e) = Ey/(JX.BZ) should be constant.

Another variable that is frequently used to explain the Hall Effect is the ratio of the currents JY to JX.

This is termed as the Hall angle and is denoted with θ θ = JY / JX = σ EY / JX

= σ RH BZ

= µ H BX

Here µ H is termed as the Hall mobility. The hall angle is equal to the average no. of radians traversed through a particle between collisions.


Related Discussions:- Explain hall effect with hall mobility and hall angle

Explain dipolar polarization, Explain dipolar polarization. Dipolar ...

Explain dipolar polarization. Dipolar polarization is a polarization which is particular to polar molecules. Such polarization results from permanent dipoles that retain po

Bode plot phase ad gain margin, Using Bode plot calculate (a) Phase margin ...

Using Bode plot calculate (a) Phase margin (b) Gain margin (c) Stability of closed loop system. The open transfer function of the system is t=30/(s+2)/(s+3)Using Bode plot calcula

Thevenin theorem, advantages and disadvantages of thevenin theorem

advantages and disadvantages of thevenin theorem

Emf produced by windings, Q. emf produced by windings? The time variati...

Q. emf produced by windings? The time variation of emf for a single conductor corresponds to the spatial variation of air-gap flux density. By suitable winding design, the harm

Electronic and electrical measurement CRO., Describe the construction and w...

Describe the construction and working of atleast two types of storage CRO

Earth leakage-earthing, Earth Leakage : Earth leakage takes place when, th...

Earth Leakage : Earth leakage takes place when, through some fault in an appliance or its connections. Electric current escapes to earth i.e. the body of the appliance become 'liv

D.c.machines, can voltage regulation be negative?why?

can voltage regulation be negative?why?

Calculate the induced voltage, Q. A four-pole, lap-wound armature has 144 s...

Q. A four-pole, lap-wound armature has 144 slots with two coil sides per slot, each coil having two turns. If the flux per pole is 20 mWb and the armature rotates at 720 r/min, cal

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd