Explain digital control systems, Electrical Engineering

Assignment Help:

Q. Explain Digital control systems?

Significant progress has been made in recent years in discrete-data and digital control systems because of the advancesmade in digital computers andmicrocomputers, as well as the advantages found in working with digital signals. Discrete-data and digital control systems differ from the continuous-data or analog systems in that the signals in one or more parts of these systems are in the form of either a pulse train or a numerical (digital) code. The terms, sampled-data systems, discrete-data systems, discrete-time systems, and digital systems have been loosely used in the control literature.However, sampled-data systems usually refer to a general class of systems whose signals are in the formof pulse data; sampled data refers to signals that are pulse-amplitude modulated, i.e., trains of pulses with signal information carried by the amplitudes. Digital control systems refers to the use of a digital computer or controller in the system; digital data usually refers to signals that are generated by digital computers or digital transducers and are thus in some kind of coded form. A practical system such as an industrial process control is generally of such complexity that it contains analog and sampled as well as digital data. Hence the term discrete-data systems is used in a broad sense to describe all systems in which some form of digital or sampled signals occur. When a microprocessor receives and outputs digital data, the system then becomes a typical discrete-data or digital control system.

Figure (a) illustrates the basic elements of a typical closed-loop control system with sampled data; Figure (b) shows the continuous-data input e(t) to the sampler, whereas Figure (c) depicts the discrete-data output e* (t) of the sampler. A continuous input signal r(t) is applied to the system. The continuous error signal is sampled by a sampling device, the sampler, and the output of the sampler is a sequence of pulses. The pulse train may be periodic or aperiodic, with no information transmitted between two consecutive pulses. The sampler in the present case is assumed to have a uniform sampling rate, even though the rate may not be uniform in some other cases. The magnitudes of the pulses at the sampling instants represent the values of the input signal e(t) at the corresponding instants. Sampling schemes, in general, may have many variations: periodic, cyclic-rate, multirate, random, and pulse-width modulated

409_Explain Digital control systems.png

samplings. Incorporating sampling into a control system has several advantages, including that of time sharing of expensive equipment among various control channels.


Related Discussions:- Explain digital control systems

Reversibility principle, The reversibility principle of electrical machines...

The reversibility principle of electrical machines states that an electrical machine can be used to operate either as a motor, converting electrical to mechanical energy, or as a g

PIC Controller Programming, I want to do programming in PIC controller and ...

I want to do programming in PIC controller and it needs to be done on particular development board.

Obtain rated fundamental voltage across the motor, A 440-V, 60-Hz, six-pole...

A 440-V, 60-Hz, six-pole, wye-connected, squirrel-cage induction motor with a full-load speed of 1170 r/min has the following parameters per phase referred to the stator: R 1 = 0.

Give the properties and application of asbesto, Give the properties and app...

Give the properties and application of asbesto. Asbestos: It is inorganic fibrous material. Two kinds of asbestos are available. Chrysotile asbestos : This material is h

Explain steady-state error of linear systems, Q. Explain Steady-State Error...

Q. Explain Steady-State Error of Linear Systems? If the steady-state response of the output does not agree exactly with the steady state of the input, the system is said to hav

Explain the energy bands in solids, Explain the energy bands in solids. ...

Explain the energy bands in solids. There are as several energy bands in a solid as there are energy levels in the parent atoms. Many electrical properties of significance

Explain the working of electronic multimeter, Q.  Give suitable block diag...

Q.  Give suitable block diagram to explain the working of electronic multimeter. Sol. An electronic multimeter is a laboratory instrument which is capable of measurement of

Storage delay and transistor alpha- beta, Turn-on, turn-off, and storage de...

Turn-on, turn-off, and storage delay: The Bipolar transistor shows a few delay characteristics while turning on and off. Most of the transistors, and particularly power transi

Compute the area of each plate, Q For a parallel-plate capacitor with plate...

Q For a parallel-plate capacitor with plates of area A m 2 and separation d m in air, the capacitance in farads may be computed from the approximate relation Compute the a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd