Explain comparing fractions with example, Mathematics

Assignment Help:

Explain Comparing Fractions with example?

If fractions are not equivalent, how do you figure out which one is larger?

Comparing fractions involves finding the least common multiple of the denominators, called LCD (Least Common Denominator).
To compare fractions:

First, convert the fractions to equivalent fractions having the LCD.

Second, compare the numerators of the fractions.

The fraction with the larger numerator is larger.

Example: Compare 7/15 and 4/10.

Step 1: Find the LCM of 15 and 10.
Multiples of 15: 15, 30, 45, 60, ...
Multiples of 10: 10, 20, 30, 40, 50 , 60,...
The smallest multiple they have in common is 30.
Therefore, the LCD of the fractions is 30.

Step 2: Write the equivalent fractions of 7/15 and 4/10 having denominator 30.
7/15 = 7x2/15x2 = 14/30
To change 15 to 30, 15 must be multiplied by 2. If the denominator is multiplied by 2, then the numerator must be multiplied by 2.

Remember: Multiplying or dividing the numerator and denominator by the same number makes equivalent fractions.
4/10 = 4x3/10x3 =12/30

To change 10 to 30, 10 must be multiplied 3. So, the numerator, 4 must be multiplied by 3.

Step 3: Compare the numerators of the equivalent fractions.
7/15?4/10
14/30?12/30
14/30>12/30
7/15>4/10

Since 14/30 and 12/30 have the same denominators, the larger fraction has the larger numerator.

14/30 is larger. 14/30 is the same as 7/15.

Therefore, 7/15 is the larger fraction.


Related Discussions:- Explain comparing fractions with example

Right angle triangle, If the points for a right angle triangle are XYZ wher...

If the points for a right angle triangle are XYZ where do I mark the points?

Calculate zeros in the denominator of rational expressions, About Zeros in ...

About Zeros in the Denominator of Rational Expressions One thing that you must be careful about when working with rational expressions is that the denominator can never be zero

Finite difference method, Two reservoirs of equal cross sectional areas (31...

Two reservoirs of equal cross sectional areas (315 m 2 ) and at equal elevations are connected by a pipe of length 20 m and cross sectional area 3 m 2 . The reservoir on the left (

Play and learn maths, PLAY AND LEARN :  Children can learn many basic math...

PLAY AND LEARN :  Children can learn many basic mathematical concepts through games. They enjoy Mathematical concepts can be playing within familiar contexts. Their games also gen

Find out the radius of convergence, Example: Find out the radius of conver...

Example: Find out the radius of convergence for the following power series. Solution : Therefore, in this case we have, a n = ((-3) n )/(n7 n+1 )   a n+1 = (

Rules of integration, Rules of Integration 1. If ...

Rules of Integration 1. If 'k' is a constant then ∫Kdx =  kx + c 2. In

Multiple integrals, how to convert multiple integral into polar form and ch...

how to convert multiple integral into polar form and change the limits of itegration

Hcf and lcm, The HCF & LCM of two expressions are respectively (x+3) and (x...

The HCF & LCM of two expressions are respectively (x+3) and (x cube-7x+6). If one is x square+2x-3 , other is? Solution) (x+3) * (x^3-7x+6) = (x^2+2x-3) * y      ( ) (HCF*LCM=

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd