Explain comparing fractions with example, Mathematics

Assignment Help:

Explain Comparing Fractions with example?

If fractions are not equivalent, how do you figure out which one is larger?

Comparing fractions involves finding the least common multiple of the denominators, called LCD (Least Common Denominator).
To compare fractions:

First, convert the fractions to equivalent fractions having the LCD.

Second, compare the numerators of the fractions.

The fraction with the larger numerator is larger.

Example: Compare 7/15 and 4/10.

Step 1: Find the LCM of 15 and 10.
Multiples of 15: 15, 30, 45, 60, ...
Multiples of 10: 10, 20, 30, 40, 50 , 60,...
The smallest multiple they have in common is 30.
Therefore, the LCD of the fractions is 30.

Step 2: Write the equivalent fractions of 7/15 and 4/10 having denominator 30.
7/15 = 7x2/15x2 = 14/30
To change 15 to 30, 15 must be multiplied by 2. If the denominator is multiplied by 2, then the numerator must be multiplied by 2.

Remember: Multiplying or dividing the numerator and denominator by the same number makes equivalent fractions.
4/10 = 4x3/10x3 =12/30

To change 10 to 30, 10 must be multiplied 3. So, the numerator, 4 must be multiplied by 3.

Step 3: Compare the numerators of the equivalent fractions.
7/15?4/10
14/30?12/30
14/30>12/30
7/15>4/10

Since 14/30 and 12/30 have the same denominators, the larger fraction has the larger numerator.

14/30 is larger. 14/30 is the same as 7/15.

Therefore, 7/15 is the larger fraction.


Related Discussions:- Explain comparing fractions with example

The shape of a graph, The Shape of a Graph, Part I : In the earlier secti...

The Shape of a Graph, Part I : In the earlier section we saw how to employ the derivative to finds out the absolute minimum & maximum values of a function.  Though, there is many

Principle of superposition, If y 1 (t) and y 2 (t) are two solutions to a...

If y 1 (t) and y 2 (t) are two solutions to a linear, homogeneous differential equation thus it is y (t ) = c 1 y 1 (t ) + c 2 y 2 (t )   ........................(3) Remem

Definition of limit, Definition of limit : Consider that the limit of f(x)...

Definition of limit : Consider that the limit of f(x) is L as x approaches a & write this as provided we can make f(x) as close to L as we desire for all x adequately clos

Mixing problems, Let's start things by searching for a mixing problem.  Pre...

Let's start things by searching for a mixing problem.  Previously we saw these were back in the first order section. In those problems we had a tank of liquid with several kinds of

What do you mean by transient state, What do you mean by transient state an...

What do you mean by transient state and steady-state queueing systems If the characteristics of a queuing system are independent of time or equivalently if the behaviour of the

Distance traveled by car - word problem, Distance Traveled by Car - word pr...

Distance Traveled by Car - word problem: It takes a man 4 hours to reach a destination 1325 miles from his home. He drives to the airport at an average speed of 50 miles per h

Quadratic Functions, Can you please explain what Quadratic functions are?

Can you please explain what Quadratic functions are?

Fenrir chain, Fenrir the wolf is bound by a magical chain. The chain is an ...

Fenrir the wolf is bound by a magical chain. The chain is an endless piece madr up of 30 links.Originally forged by 6 pieces , each made up of 5 links. It costs 2 silver coins to c

What is exponents values, What is Exponents values? Exponents were inve...

What is Exponents values? Exponents were invented as a quick way to show that you are multiplying a number by itself several times. It's too much trouble to write something

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd