Expected value, Mathematics

Assignment Help:

 

Expected Value

For taking decisions under conditions of uncertainty, the concept of expected value of a random variable is used. The expected value is the mean of a probability distribution. The mean is computed as the weighted average of the value that the random variable can assume. The probabilities assigned are used as weights. Thus, it is computed by summing up the random variables multiplied by their respective probabilities of occurrence.

            E[X] = SX P(X)

Example 

 

A person expects a gain of Rs.80, Rs.120, Rs.160 and Rs.20 by investing in a share. The probability distribution of the gains is as follows.

Gain (Rs.)

Probability

80

120

160

20

0.2

0.4

0.3

0.1

The expected gain from the share is,

(80 x 0.2) + (120 x 0.4) + (160 x 0.3) + (20 x 0.1)

=       Rs.(16 + 48 + 48 + 2) = Rs.114

This expected value can be used to compare different investment opportunities. Suppose the investor could invest the amount in another security for which the probability distribution of gains is as follows:

Gain (Rs.)

Probability

150

  80

  20

0.1

0.8

0.1

The expected gain from the second security is,

(150 x 0.1) + (80 x 0.8) + (20 x 0.1)

= Rs.(15 + 64 + 2) = Rs.81

Since the expected gain from the second security is only Rs.81 as compared to Rs.114 from the first, the investor would do well to invest in the first security.

REMARKS

The points to be noted are:

  1. The expected value calculation does not predict the value.

It does not mean that investment in the first security will always lead to a gain of Rs.114 and investment in the second security will always lead to a gain of Rs.81.

  1. Comparing the two expected values and taking a decision based on them only helps in ascertaining which of the alternatives is more likely to lead to higher profits.

Since the expected value of gain from the first security is higher than the expected value of gain from the second, one may conclude that the chance of higher gain is more likely from investing in the first rather than the second.

 


Related Discussions:- Expected value

Triangles, ABC is a triangle right angled at c. let BC=a, CA=b, AB=c and lr...

ABC is a triangle right angled at c. let BC=a, CA=b, AB=c and lrt p be the length of the perpendicular from C on AB. prove that cp=ab and 1/p2=1/a2+1/b2

Horizontal asymptotes, Horizontal asymptotes : Such as we can have vert...

Horizontal asymptotes : Such as we can have vertical asymptotes defined in terms of limits we can also have horizontal asymptotes explained in terms of limits. Definition

Ogive, How to construct a histogram into an ogive

How to construct a histogram into an ogive

Define number line, Q. Define Number Line? Ans. A number line is a...

Q. Define Number Line? Ans. A number line is a nice way to visualize and examine the ordering of the positive and negative numbers. Every positive and negative number that

Determine how many poles are there in the stack, 1. A stack of poles has 22...

1. A stack of poles has 22 poles in the bottom row, 21 poles in the next row, and so on, with 6 poles in the top row. How many poles are there in the stack? 2. In the formula N

SAT question, In a certain class, one half of the male students and two thi...

In a certain class, one half of the male students and two thirds of the female students speak French. If there are three fourths as many girls as boys in the class. What fraction o

Inverse tangent, Inverse Tangent : Following is the definition of the inve...

Inverse Tangent : Following is the definition of the inverse tangent.  y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2 Again, we have a limi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd