Expected value, Mathematics

Assignment Help:

 

Expected Value

For taking decisions under conditions of uncertainty, the concept of expected value of a random variable is used. The expected value is the mean of a probability distribution. The mean is computed as the weighted average of the value that the random variable can assume. The probabilities assigned are used as weights. Thus, it is computed by summing up the random variables multiplied by their respective probabilities of occurrence.

            E[X] = SX P(X)

Example 

 

A person expects a gain of Rs.80, Rs.120, Rs.160 and Rs.20 by investing in a share. The probability distribution of the gains is as follows.

Gain (Rs.)

Probability

80

120

160

20

0.2

0.4

0.3

0.1

The expected gain from the share is,

(80 x 0.2) + (120 x 0.4) + (160 x 0.3) + (20 x 0.1)

=       Rs.(16 + 48 + 48 + 2) = Rs.114

This expected value can be used to compare different investment opportunities. Suppose the investor could invest the amount in another security for which the probability distribution of gains is as follows:

Gain (Rs.)

Probability

150

  80

  20

0.1

0.8

0.1

The expected gain from the second security is,

(150 x 0.1) + (80 x 0.8) + (20 x 0.1)

= Rs.(15 + 64 + 2) = Rs.81

Since the expected gain from the second security is only Rs.81 as compared to Rs.114 from the first, the investor would do well to invest in the first security.

REMARKS

The points to be noted are:

  1. The expected value calculation does not predict the value.

It does not mean that investment in the first security will always lead to a gain of Rs.114 and investment in the second security will always lead to a gain of Rs.81.

  1. Comparing the two expected values and taking a decision based on them only helps in ascertaining which of the alternatives is more likely to lead to higher profits.

Since the expected value of gain from the first security is higher than the expected value of gain from the second, one may conclude that the chance of higher gain is more likely from investing in the first rather than the second.

 


Related Discussions:- Expected value

Solve the form x2 - bx - c in factoring polynomials, Solve The form x 2 -...

Solve The form x 2 - bx - c in  Factoring Polynomials ? This tutorial will help you factor quadratics that look something like this: x 2 - 11x - 12 (No lead coefficient

Find the maximum expected holdings, Problem: A person has 3 units of mo...

Problem: A person has 3 units of money available for investment in a business opportunity that matures in 1 year. The opportunity is risky in that the return is either double o

Integration techniques, Integration Techniques In this section we are ...

Integration Techniques In this section we are going to be looking at several integration techniques and methods. There are a fair number of integration techniques and some wil

Prove that ac2 = ap2 + 2(1+2)bp2, ABC is a right-angled isosceles triangle,...

ABC is a right-angled isosceles triangle, right-angled at B. AP, the bisector of ∠BAC, intersects BC at P. Prove that AC 2 = AP 2 + 2(1+√2)BP 2 Ans:    AC = √2AB (Sinc

Discret math, i have a question about discret math

i have a question about discret math

ALGEBRA, FIND PRODUCT (-41)*(102)

FIND PRODUCT (-41)*(102)

Probability, an insurance salesman sells policies to 5 men, all of identica...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 20 years hence is 2/3.Find the p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd