Expected value, Mathematics

Assignment Help:

 

Expected Value

For taking decisions under conditions of uncertainty, the concept of expected value of a random variable is used. The expected value is the mean of a probability distribution. The mean is computed as the weighted average of the value that the random variable can assume. The probabilities assigned are used as weights. Thus, it is computed by summing up the random variables multiplied by their respective probabilities of occurrence.

            E[X] = SX P(X)

Example 

 

A person expects a gain of Rs.80, Rs.120, Rs.160 and Rs.20 by investing in a share. The probability distribution of the gains is as follows.

Gain (Rs.)

Probability

80

120

160

20

0.2

0.4

0.3

0.1

The expected gain from the share is,

(80 x 0.2) + (120 x 0.4) + (160 x 0.3) + (20 x 0.1)

=       Rs.(16 + 48 + 48 + 2) = Rs.114

This expected value can be used to compare different investment opportunities. Suppose the investor could invest the amount in another security for which the probability distribution of gains is as follows:

Gain (Rs.)

Probability

150

  80

  20

0.1

0.8

0.1

The expected gain from the second security is,

(150 x 0.1) + (80 x 0.8) + (20 x 0.1)

= Rs.(15 + 64 + 2) = Rs.81

Since the expected gain from the second security is only Rs.81 as compared to Rs.114 from the first, the investor would do well to invest in the first security.

REMARKS

The points to be noted are:

  1. The expected value calculation does not predict the value.

It does not mean that investment in the first security will always lead to a gain of Rs.114 and investment in the second security will always lead to a gain of Rs.81.

  1. Comparing the two expected values and taking a decision based on them only helps in ascertaining which of the alternatives is more likely to lead to higher profits.

Since the expected value of gain from the first security is higher than the expected value of gain from the second, one may conclude that the chance of higher gain is more likely from investing in the first rather than the second.

 


Related Discussions:- Expected value

Fraction, how do you learn about equivelant fractions

how do you learn about equivelant fractions

Diffrence between rational and irrational numbers, Q. Diffrence between Rat...

Q. Diffrence between Rational and Irrational Numbers? Ans. A number which is not rational is called irrational. The word "irrational" sounds not quite right...as though th

Levels of significance - rejection and acceptance regions, Levels of signif...

Levels of significance A level of significance is a probability value which is utilized when conducting tests of hypothesis. A level of significance is mostly the probability

Pde, i find paper that has sam my homework which i need it, in you website...

i find paper that has sam my homework which i need it, in you website , is that mean you have already the solution of that ?

Progressions, The sum of the series 1+1/2+1/4,..is

The sum of the series 1+1/2+1/4,..is

What day?, together, pearl and harvey are going to visit their aunt on sund...

together, pearl and harvey are going to visit their aunt on sunday. If Pearl visits their aunt every 6 days, while harvey every 8 days, on what day will they visit their aunt toget

Decision theory, DECISION THEORY People constantly make decision...

DECISION THEORY People constantly make decisions in their private lives as well as in their work. Some decisions are qualitative in terms of their implications and signi

Example of negative number, Q. Example of negative number? If you take ...

Q. Example of negative number? If you take an elevator 8 stories  down , what would be the opposite of this? The opposite would be that you take the elevator 8 stories  up .

Percents, If 2/3 of a number is 24 then 1/4 of a number is...

If 2/3 of a number is 24 then 1/4 of a number is...

Evaluate the circumference of the spray, A water sprinkler operates in a ci...

A water sprinkler operates in a circular pattern a distance of 10 ft. Evaluate the circumference of the spray? (π = 3.14) a. 31.4 ft b. 314 ft c. 62.8 ft d. 628 ft

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd