Example on eulers method, Mathematics

Assignment Help:

For the initial value problem

y' + 2y = 2 - e-4t, y(0) = 1

By using Euler's Method along with a step size of h = 0.1 to get approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4, and 0.5. Compare them to the accurate values of the solution as such points.

Solution

It is a fairly simple linear differential equation thus we'll leave it to you to check that the solution as

y(t) = 1 + ½ e-4t - ½ e-2t

Thus as to use Euler's Method we first want to rewrite the differential equation in the form specified in (1).

y'= 2 - e-4t-2y

From that we can notice that f (t, y ) = 2 - e-4t  - 2y.  Also see that t = 0 and y0 = 1.  We can here start doing many computations.

fo = f(0,1) = 2 - e-4(0)  - 2(1) = -1

y1 = y0 + h f0 = 1 (0.1) (-1) = 0.9

Therefore, the approximation to the solution at t1 = 0.1 is y1 = 0.9.

At the next step we contain

f1 = f(0.1,0.9) = 2 - e-4(0.1)  - 2(0.9) = -0.470320046

y2 = y1 + h f1 = 0.9 + (0.1) (-0.470320046) = 0.852967995

Therefore, the approximation to the solution at t2 = 0.2 is y2 = 0.852967995.

I'll leave this to you to verify the remainder of these calculations.

 f2  =-0.155264954,     y3  = 0.837441500

f3  =0.023922788,        y4  = 0.839833779

f4  =0.1184359245,      y5  = 0.851677371

Here's a rapid table which gives the approximations and also the exact value of the solutions at the specified points.

Time, tn

Approximation

Exact

Error

t0 = 0 t1 = 0.1 t2 = 0.2 t3 = 0.3 t4 = 0.4 t5 = 0.5

y0 =1

y1 =0.9

y2 =0.852967995

y3 =0.837441500

y4 =0.839833779

y5 =0.851677371

y(0) = 1

y(0.1) = 0.925794646

y(0.2) = 0.889504459 y(0.3) = 0.876191288 y(0.4) = 0.876283777 y(0.5) = 0.883727921

0 %

2.79 %

4.11 %

4.42 %

4.16 %

3.63 %

We've also comprised the error as a percentage. It's frequently easier to notice how well an approximation does whether you look at percentages. The formula for that is,

 Percent error = (|exact - approximate|/exact) - 100

We utilized absolute value in the numerator because we actually don't care at this point if the approximation is smaller or larger than the exact. We're merely interested in how close the two are.

The maximum error in the approximations from the previous illustration was 4.42 percent that isn't too bad, although also isn't all that great of an approximation. Thus, provided we aren't after very correct approximations such didn't do too badly. This type of error is commonly unacceptable in almost all actual applications though. Consequently, how can we get better approximations?

By using a tangent line recall that we are getting the approximations to approximate the value of the solution and which we are moving forward in time through steps of h. Therefore, if we need a more accurate approximation, so it seems like one manner to get a better approximation is to not move forward as much along with each step. Conversely, take smaller h's.


Related Discussions:- Example on eulers method

Formula to calculate the surface area of basketball, Keith wants to know th...

Keith wants to know the surface area of a basketball. Which formula will he use? The surface area of a sphere is four times π times the radius squared.

Quartic polynomial, Question: Let f be a quartic polynomial (ie. a poly...

Question: Let f be a quartic polynomial (ie. a polynomial of degree 4). Suppose that f has zeros at -2; 1; 3; 4 and that f(0) = 4. Sketch a graph of f. If f(x) is

Shares and dividend, by purchasing rs.10 shares for rs.40 each mala gets 5%...

by purchasing rs.10 shares for rs.40 each mala gets 5% income on her investment. what rate of dividend is the company paying? what will be the amount of dividend if she buys 120 sh

Listing method, how will you explain the listing method?

how will you explain the listing method?

Value delivery, What do you mean by value delivery

What do you mean by value delivery

find the vector projection - vectors, Given the vectors u = 3 i - 2 j ...

Given the vectors u = 3 i - 2 j + k ,   v = i + 2 j - 4 k ,    w = -2 i + 4 j - 5 k use vector methods to answer the following: (a) Prove u , v and w can form

Michael has 16 cds how many cds does kathleen have, Michael has 16 CDs. Th...

Michael has 16 CDs. This is four more than twice the amount that Kathleen has. How many CDs does Kathleen have? Let x = the number of CDs Kathleen has. Four more than twice th

Introduction to the normal distribution, Q. Introduction to the Normal Dist...

Q. Introduction to the Normal Distribution? Ans. The Binomial distribution is a model for what might happen in the future for a discrete random variable. The Normal Distri

Shares and dividend, want to make an assignment on shares and dividend for ...

want to make an assignment on shares and dividend for class 10

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd