Example of synthetic division, Algebra

Assignment Help:

Using synthetic division do following  divisions.

Divide 2x3 - 3x - 5  by x + 2

Solution

Okay in this case we have to be a little careful here. We have to divide by a term in the form x - r in order for this to work & that minus sign is absolutely needed.  Thus, we're first going to need to write x + 2 as,

                                             x+ 2 = x - ( -2)

and in doing thus we can see that r = -2 .

Now we can do synthetic division & this time we'll just put up the results & leave it to you to verify all the actual numbers.

7_Example of synthetic division.png

Thus, in this case we have,

2 x3 - 3x - 5 =( x+ 2)(2 x2 - 4 x + 5) -15

So, just why are we doing this? One answer is that, down the road in a later section, we are going to wish for get our hands on the Q(x).  Just why we might want to do that will have to wait for an explanation until we get to that point.

Let's start out with the division algorithm.

                                         P ( x)=( x - r ) Q ( x )+ R

Now, let's evaluate the polynomial P(x) at r.  If here we had an actual polynomial we could evaluate P(x) directly for sure, but let's employ the division algorithm and see what we get,

            P ( r)=( r - r) Q ( r )+ R

                      =(0) Q ( r)+ R

                             = R

Now, that's suitable. The remainder of division algorithm is also the value of the polynomial evaluated at r. thus, from our earlier examples now we know the following function evaluations.

If P ( x)= 5x3 - x2+ 6 then P ( 4) =310

If P ( x)= 2 x3 - 3x - 5 then P ( -2)=-15

If P ( x ) = 4 x4 -10 x2 + 1 then P (6)= 4825

It is a very quick method for evaluating polynomials.  For polynomials along with only a few terms and/or polynomials along "small" degree it may not be much quicker that directly evaluating them.  Though, if there are several terms in the polynomial & they contain large degrees it can be much quicker & much less prone to mistakes than calculating them directly.


Related Discussions:- Example of synthetic division

Interval notation, Interval notation The next topic that we have to dis...

Interval notation The next topic that we have to discuss is the idea of interval notation.  Interval notation is some very pleasant shorthand for inequalities & will be utilize

Geometry, The length of a rectangle is twice it''s width. If the length of ...

The length of a rectangle is twice it''s width. If the length of its diagonal is 16root5 cm, find its area

Solve equations with more than one variable, Solve   A= P (1 + rt ) for r. ...

Solve   A= P (1 + rt ) for r. Solution Here is an expression in the form,                             r = Equation involving numbers, A, P, and t In other terms, th

Applications of logarithmic equation, In this last section of this chapter ...

In this last section of this chapter we have to look at some applications of exponential & logarithm functions. Compound Interest This first application is compounding inte

Evaluate the logarithms, Example   Evaluate following logarithms. log 4 ...

Example   Evaluate following logarithms. log 4 16 Solution Now, the reality is that directly evaluating logarithms can be a very complicated process, even for those who

Quadratic equations, Ask question #Minimum 100 words is accepted# is help...

Ask question #Minimum 100 words is accepted# is help available for categories listed above

Financial Polynomials, need step by step instructions on solving P = $500 a...

need step by step instructions on solving P = $500 and r = 11% = .11

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd