Example of repeated eigenvalues, Mathematics

Assignment Help:

Illustration: Solve the following IVP.

1016_Example of Repeated eigenvalues.png

Solution:

First get the eigenvalues for the system.

1604_Example of Repeated eigenvalues1.png

= l2 - 10 l+ 25

= (l- 5)2

l1,2 = 5

Therefore, we got a double eigenvalue. Obviously that must not be too surprising given the section which we're in. here we find the eigenvector for that eigenvalue.

704_Example of Repeated eigenvalues2.png

2h1 +   h2 = 0,                         ⇒         h2 = - 2h1

446_Example of Repeated eigenvalues3.png

The eigenvector is,

h1≠ 0

h1= 1

The next step is get ?r.  To do this we'll require solving,

848_Example of Repeated eigenvalues4.png

2  ?r1+  ?r2 = 1,                       ?r2 = 1 - 2  ?r1

Remember that this is almost the same to the system which we solve to find the eigenvalue.  The simple difference is the right hand side. The most common possible ?r is,

601_Example of Repeated eigenvalues5.png

If r1 = 0

During this case, unlike the eigenvector system we can select the constant to be anything we need, therefore we might as well pick it to create our life easier. This generally means picking this to be zero.

 We can now write down the general solution to the system.

109_Example of Repeated eigenvalues6.png

Applying the initial condition to get the constants provides us,

2087_Example of Repeated eigenvalues7.png

c1 = 2;

-2 c1 + c2 = -5;

By solving both equations we get:

c1 = 2;

c2 = -1

The actual solution is,

1353_Example of Repeated eigenvalues8.png


Related Discussions:- Example of repeated eigenvalues

Interquarticles, (i may have spelled it wrong)but i forgot how to do them.

(i may have spelled it wrong)but i forgot how to do them.

Find a quadratic polynomial having a and ß, If α,β are the zeros of a Quadr...

If α,β are the zeros of a Quadratic polynomial such that α + β = 24, α - β = 8. Find a Quadratic polynomial having α and β as its zeros.

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Draw a common graph y = sin ( x ), Graph y = sin ( x ) Solution : As a...

Graph y = sin ( x ) Solution : As along the first problem in this section there actually isn't a lot to do other than graph it.  Following is the graph. From this grap

Example of integration by parts - integration techniques, Example of Integr...

Example of Integration by Parts - Integration techniques Illustration1:  Evaluate the following integral. ∫ xe 6x dx Solution : Thus, on some level, the difficulty

Trigonometry, 1-tan^2 A/1+tan^2 = cos A - sinA/cos A

1-tan^2 A/1+tan^2 = cos A - sinA/cos A

Formula to computing how much lumber to buy, Audrey is creating a increased...

Audrey is creating a increased flowerbed which is 4.5 ft by 4.5 ft. She requires computing how much lumber to buy. If she requires knowing the distance around the flowerbed, which

Quadratic Equations, how to find minimum value of quadratic equation?

how to find minimum value of quadratic equation?

Facts regarding linear equations, To solve out linear equations we will mak...

To solve out linear equations we will make heavy use of the following facts. 1. If a = b then a + c = b + c for any c.  All it is saying that we can add number, c, to both sides

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd