Example of repeated eigenvalues, Mathematics

Assignment Help:

Illustration: Solve the following IVP.

1016_Example of Repeated eigenvalues.png

Solution:

First get the eigenvalues for the system.

1604_Example of Repeated eigenvalues1.png

= l2 - 10 l+ 25

= (l- 5)2

l1,2 = 5

Therefore, we got a double eigenvalue. Obviously that must not be too surprising given the section which we're in. here we find the eigenvector for that eigenvalue.

704_Example of Repeated eigenvalues2.png

2h1 +   h2 = 0,                         ⇒         h2 = - 2h1

446_Example of Repeated eigenvalues3.png

The eigenvector is,

h1≠ 0

h1= 1

The next step is get ?r.  To do this we'll require solving,

848_Example of Repeated eigenvalues4.png

2  ?r1+  ?r2 = 1,                       ?r2 = 1 - 2  ?r1

Remember that this is almost the same to the system which we solve to find the eigenvalue.  The simple difference is the right hand side. The most common possible ?r is,

601_Example of Repeated eigenvalues5.png

If r1 = 0

During this case, unlike the eigenvector system we can select the constant to be anything we need, therefore we might as well pick it to create our life easier. This generally means picking this to be zero.

 We can now write down the general solution to the system.

109_Example of Repeated eigenvalues6.png

Applying the initial condition to get the constants provides us,

2087_Example of Repeated eigenvalues7.png

c1 = 2;

-2 c1 + c2 = -5;

By solving both equations we get:

c1 = 2;

c2 = -1

The actual solution is,

1353_Example of Repeated eigenvalues8.png


Related Discussions:- Example of repeated eigenvalues

Linear relations, a drawn picture on a graph that includes equations of eac...

a drawn picture on a graph that includes equations of each line

Jamal, jamal works every morning in his garden. yesterday he worked 3 AND 3...

jamal works every morning in his garden. yesterday he worked 3 AND 3-4HOURS. HE SPENT 1-3 OF THE TIME PULLING WEEDS. HOW MANY HOURS DID JAMAL SPEND PULLING WEEDS?

Binomial, how do you find the co=efficent when there are two brackets invol...

how do you find the co=efficent when there are two brackets involved?

Prove - digraph of a partial order has no cycle more than 1, Prove that the...

Prove that the Digraph of a partial order has no cycle of length greater than 1. Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A

Advanced functions, writ the equation that describes the motion of a point ...

writ the equation that describes the motion of a point on the wheel that has a center of 4m off the ground, has radius of 15 cm, makes a full rotation every 10 seconds and starts a

..Job, Eddie mkes $15.75 per hour. Estimate how much Eddie will make per ye...

Eddie mkes $15.75 per hour. Estimate how much Eddie will make per year if he works 40 hours per week and 50 weeks per year.

Find area of y = 2 x2 + 10 and y = 4 x + 16, Find out the area of the regio...

Find out the area of the region bounded by y = 2 x 2 + 10 and y = 4 x + 16 . Solution In this case the intersection points (that we'll required eventually) are not going t

Complex number, The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z...

The points A,B,C and D represent the numbers Z1,Z2,Z3 and Z4.ABCD is rhombus;AC=2BD.if  Z2=2+i ,Z4=1-2i,find Z1 and Z3 Ans) POI of diagonals: (3-i)/2. Using concept of rotation:

Area, #What is an easy way to find the area of any figure

#What is an easy way to find the area of any figure

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd