Example of repeated eigenvalues, Mathematics

Assignment Help:

Illustration: Solve the following IVP.

1016_Example of Repeated eigenvalues.png

Solution:

First get the eigenvalues for the system.

1604_Example of Repeated eigenvalues1.png

= l2 - 10 l+ 25

= (l- 5)2

l1,2 = 5

Therefore, we got a double eigenvalue. Obviously that must not be too surprising given the section which we're in. here we find the eigenvector for that eigenvalue.

704_Example of Repeated eigenvalues2.png

2h1 +   h2 = 0,                         ⇒         h2 = - 2h1

446_Example of Repeated eigenvalues3.png

The eigenvector is,

h1≠ 0

h1= 1

The next step is get ?r.  To do this we'll require solving,

848_Example of Repeated eigenvalues4.png

2  ?r1+  ?r2 = 1,                       ?r2 = 1 - 2  ?r1

Remember that this is almost the same to the system which we solve to find the eigenvalue.  The simple difference is the right hand side. The most common possible ?r is,

601_Example of Repeated eigenvalues5.png

If r1 = 0

During this case, unlike the eigenvector system we can select the constant to be anything we need, therefore we might as well pick it to create our life easier. This generally means picking this to be zero.

 We can now write down the general solution to the system.

109_Example of Repeated eigenvalues6.png

Applying the initial condition to get the constants provides us,

2087_Example of Repeated eigenvalues7.png

c1 = 2;

-2 c1 + c2 = -5;

By solving both equations we get:

c1 = 2;

c2 = -1

The actual solution is,

1353_Example of Repeated eigenvalues8.png


Related Discussions:- Example of repeated eigenvalues

Adding & subtracting i guess, Jack and his mother paid $11.50 for tickets t...

Jack and his mother paid $11.50 for tickets to the movies, and adults tickets cost $4.50 more than a child ticket what was the cost of each ticket?

Example of developing an understanding, I gave my niece a whole heap of bea...

I gave my niece a whole heap of beads and showed her how to divide it up into sets of 10 beads each. Then I showed her how she could lay out each set of I0 beads in a line, and cal

Sin3? = cos2? find the most general values of ?, sin3θ = cos2θ find the mos...

sin3θ = cos2θ find the most general values of θ satisfying the equatios? sinax + cosbx = 0 solve ? Solution)  sin (3x) = sin(2x + x) = sin(2x)cos(x) + cos(2x)sin(x) = 2sin(x)cos(

Probability, two coins are flipped once.what is the probability of getting ...

two coins are flipped once.what is the probability of getting two tails?

Variance-measure of central tendency, Variance Square of the standard...

Variance Square of the standard deviation is termed as variance. The semi inter-quartile range - It is a measure of dispersion which includes the use of quartile. A q

Trigonometry, Prove: cotA/2.cotB/2.cotC/2 = cotA/2+cotB/2+cotC/2

Prove: cotA/2.cotB/2.cotC/2 = cotA/2+cotB/2+cotC/2

Power series - sequences and series, Power Series We have spent quite...

Power Series We have spent quite a bit of time talking about series now and along with just only a couple of exceptions we've spent most of that time talking about how to fin

Help, draw a right angle isosceles triangle with 9 triangles in it

draw a right angle isosceles triangle with 9 triangles in it

Proof of the derivative of a constant, Proof of the Derivative of a Constan...

Proof of the Derivative of a Constant : d(c)/dx = 0 It is very easy to prove by using the definition of the derivative therefore define, f(x) = c and the utilize the definiti

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd