Example of repeated eigenvalues, Mathematics

Assignment Help:

Illustration: Solve the following IVP.

1016_Example of Repeated eigenvalues.png

Solution:

First get the eigenvalues for the system.

1604_Example of Repeated eigenvalues1.png

= l2 - 10 l+ 25

= (l- 5)2

l1,2 = 5

Therefore, we got a double eigenvalue. Obviously that must not be too surprising given the section which we're in. here we find the eigenvector for that eigenvalue.

704_Example of Repeated eigenvalues2.png

2h1 +   h2 = 0,                         ⇒         h2 = - 2h1

446_Example of Repeated eigenvalues3.png

The eigenvector is,

h1≠ 0

h1= 1

The next step is get ?r.  To do this we'll require solving,

848_Example of Repeated eigenvalues4.png

2  ?r1+  ?r2 = 1,                       ?r2 = 1 - 2  ?r1

Remember that this is almost the same to the system which we solve to find the eigenvalue.  The simple difference is the right hand side. The most common possible ?r is,

601_Example of Repeated eigenvalues5.png

If r1 = 0

During this case, unlike the eigenvector system we can select the constant to be anything we need, therefore we might as well pick it to create our life easier. This generally means picking this to be zero.

 We can now write down the general solution to the system.

109_Example of Repeated eigenvalues6.png

Applying the initial condition to get the constants provides us,

2087_Example of Repeated eigenvalues7.png

c1 = 2;

-2 c1 + c2 = -5;

By solving both equations we get:

c1 = 2;

c2 = -1

The actual solution is,

1353_Example of Repeated eigenvalues8.png


Related Discussions:- Example of repeated eigenvalues

Statistics, find the number of ways 17 employees can b chosen from 327

find the number of ways 17 employees can b chosen from 327

Calculus, Calculus Calculus is a branch of mathematics which describes...

Calculus Calculus is a branch of mathematics which describes how one variable changes in relationship to another variable. It enables us to determine the rate of change of one

Compute the dot product for the equation, Compute the dot product for each ...

Compute the dot product for each of the subsequent equation  (a) v → = 5i → - 8j → , w → = i → + 2j →  (b) a → = (0, 3, -7) , b → = (2, 3,1) Solution (a) v →

Calculus online, need help completing my online text. can provide login det...

need help completing my online text. can provide login details

Explain the decimal system in detail, Explain The Decimal System in detail?...

Explain The Decimal System in detail? A decimal, such as 1.23, is made up of two parts: a whole number and a decimal fraction. In 1.23, the whole number is 1 and the decimal fr

Objectives to knowing your maths learner, Objectives After studying th...

Objectives After studying this unit, you should be able to briefly describe the developmental stages of children's thinking and learning processes; assess the levels

Linear differential equations, A linear differential equation is of differe...

A linear differential equation is of differential equation which can be written in the subsequent form. a n (t) y (n) (t) + a n-1 (t) y (n-1) (t)+..............+ a 1 (t) y'(

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd