Example of repeated eigenvalues, Mathematics

Assignment Help:

Illustration: Solve the following IVP.

1016_Example of Repeated eigenvalues.png

Solution:

First get the eigenvalues for the system.

1604_Example of Repeated eigenvalues1.png

= l2 - 10 l+ 25

= (l- 5)2

l1,2 = 5

Therefore, we got a double eigenvalue. Obviously that must not be too surprising given the section which we're in. here we find the eigenvector for that eigenvalue.

704_Example of Repeated eigenvalues2.png

2h1 +   h2 = 0,                         ⇒         h2 = - 2h1

446_Example of Repeated eigenvalues3.png

The eigenvector is,

h1≠ 0

h1= 1

The next step is get ?r.  To do this we'll require solving,

848_Example of Repeated eigenvalues4.png

2  ?r1+  ?r2 = 1,                       ?r2 = 1 - 2  ?r1

Remember that this is almost the same to the system which we solve to find the eigenvalue.  The simple difference is the right hand side. The most common possible ?r is,

601_Example of Repeated eigenvalues5.png

If r1 = 0

During this case, unlike the eigenvector system we can select the constant to be anything we need, therefore we might as well pick it to create our life easier. This generally means picking this to be zero.

 We can now write down the general solution to the system.

109_Example of Repeated eigenvalues6.png

Applying the initial condition to get the constants provides us,

2087_Example of Repeated eigenvalues7.png

c1 = 2;

-2 c1 + c2 = -5;

By solving both equations we get:

c1 = 2;

c2 = -1

The actual solution is,

1353_Example of Repeated eigenvalues8.png


Related Discussions:- Example of repeated eigenvalues

Systems of equations, Since we are going to be working almost exclusively a...

Since we are going to be working almost exclusively along with systems of equations wherein the number of unknowns equals the number of equations we will confine our review to thes

Example of vector, Provide the vector for each of the following. (a) The...

Provide the vector for each of the following. (a) The vector from (2, -7, 0) -  (1, - 3, - 5 ) (b) The vector from (1,-3,-5) - (2, - 7, 0) (c) The position vector for ( -

Eigenvalues and eigenvectors, Review: Systems of Equations - The tradition...

Review: Systems of Equations - The traditional initial point for a linear algebra class. We will utilize linear algebra techniques to solve a system of equations. Review: Matr

What is the marginal product of labor function, Your engineering department...

Your engineering department estimated the following production function. Q = 15L 2 - 0.5L 3 a. What is the marginal product of labor function, MP L ? b. What is the aver

Fraccions, multiply 9/19 times 95/7

multiply 9/19 times 95/7

Calculus, find or evaluate the integral integrate((e^2x + e^x + 1)/(e^x))dx...

find or evaluate the integral integrate((e^2x + e^x + 1)/(e^x))dx

Shares and dividend, a man in rested rupee 800 is buying rupee 5 shares and...

a man in rested rupee 800 is buying rupee 5 shares and then are selling at premium of rupee 1.15. He sells all the shares.find profit

Recognizes the absolute extrema & relative extrema, Recognizes the absolute...

Recognizes the absolute extrema & relative extrema for the following function.                           f ( x ) = x 2       on [-1, 2] Solution:  As this function is simpl

Using substitution solving polynomial equations, Using Substitution Solving...

Using Substitution Solving Polynomial Equations ? Solve : (x 3 + 4) 2 - 15 (x 3 + 4) + 36 = 0. You might be tempted to multiply everything out and factor. However, there

Give the definition of logarithms, Give the Definition of Logarithms ? ...

Give the Definition of Logarithms ? A logarithm to the base a of a number x is the power to which a is raised to get x. In equation format: If x = ay, then log a x = y.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd