Example of pythagorean theorem, Mathematics

Assignment Help:

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is the top of the ladder moving up the wall 12 seconds after we begin pushing?

Solution

The initial thing to do in this case is to sketch picture which demonstrated us what is going on.

1024_traingle1.png

We've described the distance of the bottom of latter through the wall to be x & the distance of the top of the ladder through the floor to be y.  Note that these are modifying with time and thus we really have to write x (t ) & y (t ) .  However, as is frequently the case with related rates/implicit differentiation problems we don't write down the (t ) part just attempt to remember it in our heads since we proceed with the problem.

Next we must identify what we know and what we desire to find. We know that the rate on which the bottom of the ladder is moving in the direction of the wall. It is,

                                                                                    x′ = - 1/4

Note that the rate is negative as the distance from the wall, x, is decreasing.  Always we need to be careful with signs with these problems.

We desire to determine the rate at which the top of the ladder is moving away through the floor. it is  y′ . Note that this quantity have to be positive as y will be increasing.

Using Pythagorean theorem.

                                        x2 + y 2  = (15)2  = 225

All that we have to do at this point is to differentiate both of the sides w.r.t. t, remembering that x & y are really functions of t and thus we'll have to do implicit differentiation.  Doing this gives an equation that illustrates the relationship among the derivatives.

                                            2xx′ + 2 yy′ = 0 .............(1)

Next, let's see which of the several parts of this equation which we know and what we have to determine. We know x′ & are being asked to determine y′ thus its okay that we don't know that.

Though, still we need to determine x and y.

Finding out x and y is in fact fairly simple.  We know that at first x = 10 and the end is being pushed in direction of the wall at a rate of 1/4 ft/sec and which we are interested in what has happened after 12 seconds. We know,

                            distance =  rate ×time

                                         =  (1 /4) (12) = 3

Thus, the end of the ladder has been pushed into 3 feet and thus after 12 seconds we have to have x = 7 . Note as well that we could have calculated this in one step as follows,

                                                    x = 10 - 1/4 (12) =7

To determine y (after 12 seconds) all that we have to do is reuse the Pythagorean Theorem  along with the values of x which we just found above.

2445_related rates.png

Now all that we ought to do is plug into (1) and solve out for  y′ .

2 (7 ) ( -1/4)+2(√176)y' =   0            ⇒          y′ =      7/4/√176 = 7/4√176 = 0.1319 ft/sec

Notice as well that we got the accurate sign for y′.  If we'd gotten a -ve then we'd have known that we had committed a mistake and we could go back & look for it.


Related Discussions:- Example of pythagorean theorem

Statistics Assignment, A. Design an investigation that details the followi...

A. Design an investigation that details the following six components:

Geometry, Determine the coordinates of the point equidistant from Salt Lake...

Determine the coordinates of the point equidistant from Salt Lake City and Helena

Convert measurements between the english system, Convert measurements betwe...

Convert measurements between the English system? To convert measurements between the English system and the metric system: 1. Look up the conversion between the two units of

Determine the domain and range of function, Determine the domain of each of...

Determine the domain of each of the following functions.                         f( x ) = x - 4 / x 2 - 2 x -15 Solution With this problem we have to avoid division by

Craig D, i need help in discrete mathematics on sets, relations, and functi...

i need help in discrete mathematics on sets, relations, and functions.

Find out the tangent line to the parametric curve, Find out the tangent lin...

Find out the tangent line(s) to the parametric curve specified by X = t5 - 4t3 Y = t2 At (0,4) Solution Note that there is actually the potential for more than on

Linear equation, The sum of the digit number is 7. If the digits are revers...

The sum of the digit number is 7. If the digits are reversed , the number formed is less than the original number. find the number

Linear programming , use the simplex method to solve the following lp probl...

use the simplex method to solve the following lp problem. max z = 107x1 + x2 + 2x3 subject to 14x1 + x2 - 6x3 + 3x4 = 7 16x1 + x2 - 6x3 3x1 - x2 - x3 x1,x2,x3,x4 > = 0

Compute the probability, From past experience a machine is termed to be set...

From past experience a machine is termed to be set up correctly on 90 percent of occasions.  If the machine is set up correctly then 95 percent of good parts are expected however i

Patrice has worked a certain how many hours has she worked, Patrice has wor...

Patrice has worked a certain amount of hours so far this week. Tomorrow she will work four more hours to finish out the week along with a total of 10 hours. How many hours has she

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd