Example of pythagorean theorem, Mathematics

Assignment Help:

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is the top of the ladder moving up the wall 12 seconds after we begin pushing?

Solution

The initial thing to do in this case is to sketch picture which demonstrated us what is going on.

1024_traingle1.png

We've described the distance of the bottom of latter through the wall to be x & the distance of the top of the ladder through the floor to be y.  Note that these are modifying with time and thus we really have to write x (t ) & y (t ) .  However, as is frequently the case with related rates/implicit differentiation problems we don't write down the (t ) part just attempt to remember it in our heads since we proceed with the problem.

Next we must identify what we know and what we desire to find. We know that the rate on which the bottom of the ladder is moving in the direction of the wall. It is,

                                                                                    x′ = - 1/4

Note that the rate is negative as the distance from the wall, x, is decreasing.  Always we need to be careful with signs with these problems.

We desire to determine the rate at which the top of the ladder is moving away through the floor. it is  y′ . Note that this quantity have to be positive as y will be increasing.

Using Pythagorean theorem.

                                        x2 + y 2  = (15)2  = 225

All that we have to do at this point is to differentiate both of the sides w.r.t. t, remembering that x & y are really functions of t and thus we'll have to do implicit differentiation.  Doing this gives an equation that illustrates the relationship among the derivatives.

                                            2xx′ + 2 yy′ = 0 .............(1)

Next, let's see which of the several parts of this equation which we know and what we have to determine. We know x′ & are being asked to determine y′ thus its okay that we don't know that.

Though, still we need to determine x and y.

Finding out x and y is in fact fairly simple.  We know that at first x = 10 and the end is being pushed in direction of the wall at a rate of 1/4 ft/sec and which we are interested in what has happened after 12 seconds. We know,

                            distance =  rate ×time

                                         =  (1 /4) (12) = 3

Thus, the end of the ladder has been pushed into 3 feet and thus after 12 seconds we have to have x = 7 . Note as well that we could have calculated this in one step as follows,

                                                    x = 10 - 1/4 (12) =7

To determine y (after 12 seconds) all that we have to do is reuse the Pythagorean Theorem  along with the values of x which we just found above.

2445_related rates.png

Now all that we ought to do is plug into (1) and solve out for  y′ .

2 (7 ) ( -1/4)+2(√176)y' =   0            ⇒          y′ =      7/4/√176 = 7/4√176 = 0.1319 ft/sec

Notice as well that we got the accurate sign for y′.  If we'd gotten a -ve then we'd have known that we had committed a mistake and we could go back & look for it.


Related Discussions:- Example of pythagorean theorem

Evaluate following limits at infinity, Evaluate following limits. ...

Evaluate following limits. Solution In this part what we have to note (using Fact 2 above) is that in the limit the exponent of the exponential does this, Henc

Rationalize the denominator, Rationalize the denominator for following.  Su...

Rationalize the denominator for following.  Suppose that x is positive. Solution We'll have to start this one off along with first using the third property of radica

Relationship between inverse and sine function, Relationship between the in...

Relationship between the inverse sine function and the sine function We have the given relationship among the inverse sine function and the sine function.

Question, What is a marketing plan

What is a marketing plan

Draw a lattice hierarchy for dimension, New England University maintains a ...

New England University maintains a data warehouse that stores information about students, courses, and instructors. Members of the university's Board of Trustees are very much inte

Math, A small square is located inside a bigger square. The length of the s...

A small square is located inside a bigger square. The length of the small square is 3 in. The length of the large square is 7m. What is the area of the big square if you take out t

Algebra, how do i sole linear epuation

how do i sole linear epuation

Circles, how to find equations of circles when given equations of centres o...

how to find equations of circles when given equations of centres on which it lies?

Types of series - telescoping series, Telescoping Series  It's now tim...

Telescoping Series  It's now time to look at the telescoping series.  In this section we are going to look at a series that is termed a telescoping series.  The name in this c

Prove that r is an equivalence relation, 1. Let S be the set of all nonzero...

1. Let S be the set of all nonzero real numbers. That is, S = R - {0}. Consider the relation R on S given by xRy iff xy > 0. (a) Prove that R is an equivalence relation on S, an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd