Example of pythagorean theorem, Mathematics

Assignment Help:

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is the top of the ladder moving up the wall 12 seconds after we begin pushing?

Solution

The initial thing to do in this case is to sketch picture which demonstrated us what is going on.

1024_traingle1.png

We've described the distance of the bottom of latter through the wall to be x & the distance of the top of the ladder through the floor to be y.  Note that these are modifying with time and thus we really have to write x (t ) & y (t ) .  However, as is frequently the case with related rates/implicit differentiation problems we don't write down the (t ) part just attempt to remember it in our heads since we proceed with the problem.

Next we must identify what we know and what we desire to find. We know that the rate on which the bottom of the ladder is moving in the direction of the wall. It is,

                                                                                    x′ = - 1/4

Note that the rate is negative as the distance from the wall, x, is decreasing.  Always we need to be careful with signs with these problems.

We desire to determine the rate at which the top of the ladder is moving away through the floor. it is  y′ . Note that this quantity have to be positive as y will be increasing.

Using Pythagorean theorem.

                                        x2 + y 2  = (15)2  = 225

All that we have to do at this point is to differentiate both of the sides w.r.t. t, remembering that x & y are really functions of t and thus we'll have to do implicit differentiation.  Doing this gives an equation that illustrates the relationship among the derivatives.

                                            2xx′ + 2 yy′ = 0 .............(1)

Next, let's see which of the several parts of this equation which we know and what we have to determine. We know x′ & are being asked to determine y′ thus its okay that we don't know that.

Though, still we need to determine x and y.

Finding out x and y is in fact fairly simple.  We know that at first x = 10 and the end is being pushed in direction of the wall at a rate of 1/4 ft/sec and which we are interested in what has happened after 12 seconds. We know,

                            distance =  rate ×time

                                         =  (1 /4) (12) = 3

Thus, the end of the ladder has been pushed into 3 feet and thus after 12 seconds we have to have x = 7 . Note as well that we could have calculated this in one step as follows,

                                                    x = 10 - 1/4 (12) =7

To determine y (after 12 seconds) all that we have to do is reuse the Pythagorean Theorem  along with the values of x which we just found above.

2445_related rates.png

Now all that we ought to do is plug into (1) and solve out for  y′ .

2 (7 ) ( -1/4)+2(√176)y' =   0            ⇒          y′ =      7/4/√176 = 7/4√176 = 0.1319 ft/sec

Notice as well that we got the accurate sign for y′.  If we'd gotten a -ve then we'd have known that we had committed a mistake and we could go back & look for it.


Related Discussions:- Example of pythagorean theorem

Some important issue of graph, Some important issue of graph Before mov...

Some important issue of graph Before moving on to the next example, there are some important things to note. Firstly, in almost all problems a graph is pretty much needed.

Porportions, how do you solve for porportions?

how do you solve for porportions?

Find the value of given equations in polynomial , If α & ß are the zeroes ...

If α & ß are the zeroes of the polynomial 2x 2 - 4x + 5, then find the value of a.α 2 + ß 2   b. 1/ α + 1/ ß  c. (α - ß) 2 d. 1/α 2 + 1/ß 2    e.  α 3 + ß 3 (Ans:-1, 4/5 ,-6,

Circles, assignment on theorems on circle for class 9

assignment on theorems on circle for class 9

Trigonometric ratios, to difine trigonometric ratios of an angle,is it nece...

to difine trigonometric ratios of an angle,is it necessary that the initial ray of the angle must be positive x-axis?

Calculus, how to find relative extrema at the indicated interval of the fol...

how to find relative extrema at the indicated interval of the following functions and how to sketch it?

Describe subtracting negative fractions, Describe Subtracting Negative Frac...

Describe Subtracting Negative Fractions? Subtracting two fractions, whether one is positive and one is negative, or whether they are both negative, is almost the same process a

Test of homogeneity , Test of homogeneity This is concerned along with...

Test of homogeneity This is concerned along with the proposition that several populations are homogenous along with respect to some characteristic of interest for example; one

Kara brought $23 with her when she went shopping, Kara brought $23 with her...

Kara brought $23 with her when she went shopping. She spent $3.27 for lunch and $14.98 on a shirt. How much money does she have left? The two items that Kara bought must be sub

Summation notation, SUMMATION NOTATION Under this section we require to...

SUMMATION NOTATION Under this section we require to do a brief review of summation notation or sigma notation.  We will start out with two integers, n and m, along with n a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd