Example of pythagorean theorem, Mathematics

Assignment Help:

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is the top of the ladder moving up the wall 12 seconds after we begin pushing?

Solution

The initial thing to do in this case is to sketch picture which demonstrated us what is going on.

1024_traingle1.png

We've described the distance of the bottom of latter through the wall to be x & the distance of the top of the ladder through the floor to be y.  Note that these are modifying with time and thus we really have to write x (t ) & y (t ) .  However, as is frequently the case with related rates/implicit differentiation problems we don't write down the (t ) part just attempt to remember it in our heads since we proceed with the problem.

Next we must identify what we know and what we desire to find. We know that the rate on which the bottom of the ladder is moving in the direction of the wall. It is,

                                                                                    x′ = - 1/4

Note that the rate is negative as the distance from the wall, x, is decreasing.  Always we need to be careful with signs with these problems.

We desire to determine the rate at which the top of the ladder is moving away through the floor. it is  y′ . Note that this quantity have to be positive as y will be increasing.

Using Pythagorean theorem.

                                        x2 + y 2  = (15)2  = 225

All that we have to do at this point is to differentiate both of the sides w.r.t. t, remembering that x & y are really functions of t and thus we'll have to do implicit differentiation.  Doing this gives an equation that illustrates the relationship among the derivatives.

                                            2xx′ + 2 yy′ = 0 .............(1)

Next, let's see which of the several parts of this equation which we know and what we have to determine. We know x′ & are being asked to determine y′ thus its okay that we don't know that.

Though, still we need to determine x and y.

Finding out x and y is in fact fairly simple.  We know that at first x = 10 and the end is being pushed in direction of the wall at a rate of 1/4 ft/sec and which we are interested in what has happened after 12 seconds. We know,

                            distance =  rate ×time

                                         =  (1 /4) (12) = 3

Thus, the end of the ladder has been pushed into 3 feet and thus after 12 seconds we have to have x = 7 . Note as well that we could have calculated this in one step as follows,

                                                    x = 10 - 1/4 (12) =7

To determine y (after 12 seconds) all that we have to do is reuse the Pythagorean Theorem  along with the values of x which we just found above.

2445_related rates.png

Now all that we ought to do is plug into (1) and solve out for  y′ .

2 (7 ) ( -1/4)+2(√176)y' =   0            ⇒          y′ =      7/4/√176 = 7/4√176 = 0.1319 ft/sec

Notice as well that we got the accurate sign for y′.  If we'd gotten a -ve then we'd have known that we had committed a mistake and we could go back & look for it.


Related Discussions:- Example of pythagorean theorem

What is slope of a line, What is Slope of a Line ? A line can have a "...

What is Slope of a Line ? A line can have a "steep" slope or a "gradual" slope. slope = rise/run The "rise" is the distance going up or down. The "run" is the distance goin

Definite integral, Definite Integral : Given a function f ( x ) which is c...

Definite Integral : Given a function f ( x ) which is continuous on the interval [a,b] we divide the interval in n subintervals of equivalent width, Δx , and from each interval se

Vector functions - three dimensional space, Vector Functions We very f...

Vector Functions We very firstly saw vector functions back while we were looking at the Equation of Lines. In that section we talked about them as we wrote down the equation o

Slope, #question.Find the slope of the line that passes through (7, 3) and ...

#question.Find the slope of the line that passes through (7, 3) and (9, 6). Simplify your answer and write it as a proper fraction, improper fraction, or integer. .

Probability and statistics, f Y is a discrete random variable with expected...

f Y is a discrete random variable with expected value E[Y ] = µ and if X = a + bY , prove that Var (X) = b2Var (Y ) .

Find the length of the boundary and the area of the shaded, The boundary of...

The boundary of the shaded portion in the adjoining figure consists of our half-circles and two quarter-circles.  Find the length of the boundary and the area of the shaded portion

Convex rectilinear figure, the sum of the interior angles of a convex recti...

the sum of the interior angles of a convex rectilinear figure is equal to sum of the exterior angles. then the number of sides is

Calculate the price of the horseracing track, There are five horseracing tr...

There are five horseracing tracks in Kentucky. The Kentucky legislature allows only one track to be open at a time. How does this restriction affect the price the track can charge

How many checks required to be used for the monthly costs, Green Bank charg...

Green Bank charges a monthly fee of $3 for a checking account and $.10 per check. Savings-R-Us bank charges a $4.50 monthly fee and $.05 per check. How many checks required to be u

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd