Example of pythagorean theorem, Mathematics

Assignment Help:

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is the top of the ladder moving up the wall 12 seconds after we begin pushing?

Solution

The initial thing to do in this case is to sketch picture which demonstrated us what is going on.

1024_traingle1.png

We've described the distance of the bottom of latter through the wall to be x & the distance of the top of the ladder through the floor to be y.  Note that these are modifying with time and thus we really have to write x (t ) & y (t ) .  However, as is frequently the case with related rates/implicit differentiation problems we don't write down the (t ) part just attempt to remember it in our heads since we proceed with the problem.

Next we must identify what we know and what we desire to find. We know that the rate on which the bottom of the ladder is moving in the direction of the wall. It is,

                                                                                    x′ = - 1/4

Note that the rate is negative as the distance from the wall, x, is decreasing.  Always we need to be careful with signs with these problems.

We desire to determine the rate at which the top of the ladder is moving away through the floor. it is  y′ . Note that this quantity have to be positive as y will be increasing.

Using Pythagorean theorem.

                                        x2 + y 2  = (15)2  = 225

All that we have to do at this point is to differentiate both of the sides w.r.t. t, remembering that x & y are really functions of t and thus we'll have to do implicit differentiation.  Doing this gives an equation that illustrates the relationship among the derivatives.

                                            2xx′ + 2 yy′ = 0 .............(1)

Next, let's see which of the several parts of this equation which we know and what we have to determine. We know x′ & are being asked to determine y′ thus its okay that we don't know that.

Though, still we need to determine x and y.

Finding out x and y is in fact fairly simple.  We know that at first x = 10 and the end is being pushed in direction of the wall at a rate of 1/4 ft/sec and which we are interested in what has happened after 12 seconds. We know,

                            distance =  rate ×time

                                         =  (1 /4) (12) = 3

Thus, the end of the ladder has been pushed into 3 feet and thus after 12 seconds we have to have x = 7 . Note as well that we could have calculated this in one step as follows,

                                                    x = 10 - 1/4 (12) =7

To determine y (after 12 seconds) all that we have to do is reuse the Pythagorean Theorem  along with the values of x which we just found above.

2445_related rates.png

Now all that we ought to do is plug into (1) and solve out for  y′ .

2 (7 ) ( -1/4)+2(√176)y' =   0            ⇒          y′ =      7/4/√176 = 7/4√176 = 0.1319 ft/sec

Notice as well that we got the accurate sign for y′.  If we'd gotten a -ve then we'd have known that we had committed a mistake and we could go back & look for it.


Related Discussions:- Example of pythagorean theorem

Statistical models in simulation, Players and spectators enter a ballpark a...

Players and spectators enter a ballpark according to independent Poisson processes having respective rates 5 and 20 per hour. Starting at an arbitrary time, compute the probability

Progressions, The sum of the series 1+1/2+1/4,..is

The sum of the series 1+1/2+1/4,..is

To find out the volume of a cube give formula, To find out the volume of a ...

To find out the volume of a cube which measures 3 cm by 3 cm by 3 cm, what formula would you use? The volume of a cube is the length of the side cubed and the length of the sid

How much sales tax did she pay if items was 6 percent, Lindsay purchased a ...

Lindsay purchased a pocketbook for $45 and a pair of shoes for $55. The sales tax on the items was 6%. How much sales tax did she pay? Find out the price of the two items toget

Trigonometry.., if b+c=3a then the value of cotB/2.cotC/2 is equal to

if b+c=3a then the value of cotB/2.cotC/2 is equal to

Utilizes the infinite definition of the limit to prove limit, Utilizes the ...

Utilizes the definition of the limit to prove the given limit. Solution Let M > 0 be any number and we'll have to choose a δ > 0 so that, 1/ x 2   > M

Find the length and breadth of the rectangle, The area of a rectangle gets ...

The area of a rectangle gets decreased by 8 m2, if its length  is decreased by 5 m and breadth increased by 3 m. If we enhance  the length by 3 m and breadth by 2 m, the area is en

Trigonometry, Show that the radius of the circle,passing through the centre...

Show that the radius of the circle,passing through the centre of the inscribed circle of a triangle and any two of the centres of the escribed circles,is equal to the diameter of t

Example of developing an understanding, I gave my niece a whole heap of bea...

I gave my niece a whole heap of beads and showed her how to divide it up into sets of 10 beads each. Then I showed her how she could lay out each set of I0 beads in a line, and cal

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd