Example of pythagorean theorem, Mathematics

Assignment Help:

Any 15 foot ladder is resting against the wall. The bottom is at first 10 feet away from the wall & is being pushed in the direction of the wall at a rate of 1 ft/sec. How rapid is the top of the ladder moving up the wall 12 seconds after we begin pushing?

Solution

The initial thing to do in this case is to sketch picture which demonstrated us what is going on.

1024_traingle1.png

We've described the distance of the bottom of latter through the wall to be x & the distance of the top of the ladder through the floor to be y.  Note that these are modifying with time and thus we really have to write x (t ) & y (t ) .  However, as is frequently the case with related rates/implicit differentiation problems we don't write down the (t ) part just attempt to remember it in our heads since we proceed with the problem.

Next we must identify what we know and what we desire to find. We know that the rate on which the bottom of the ladder is moving in the direction of the wall. It is,

                                                                                    x′ = - 1/4

Note that the rate is negative as the distance from the wall, x, is decreasing.  Always we need to be careful with signs with these problems.

We desire to determine the rate at which the top of the ladder is moving away through the floor. it is  y′ . Note that this quantity have to be positive as y will be increasing.

Using Pythagorean theorem.

                                        x2 + y 2  = (15)2  = 225

All that we have to do at this point is to differentiate both of the sides w.r.t. t, remembering that x & y are really functions of t and thus we'll have to do implicit differentiation.  Doing this gives an equation that illustrates the relationship among the derivatives.

                                            2xx′ + 2 yy′ = 0 .............(1)

Next, let's see which of the several parts of this equation which we know and what we have to determine. We know x′ & are being asked to determine y′ thus its okay that we don't know that.

Though, still we need to determine x and y.

Finding out x and y is in fact fairly simple.  We know that at first x = 10 and the end is being pushed in direction of the wall at a rate of 1/4 ft/sec and which we are interested in what has happened after 12 seconds. We know,

                            distance =  rate ×time

                                         =  (1 /4) (12) = 3

Thus, the end of the ladder has been pushed into 3 feet and thus after 12 seconds we have to have x = 7 . Note as well that we could have calculated this in one step as follows,

                                                    x = 10 - 1/4 (12) =7

To determine y (after 12 seconds) all that we have to do is reuse the Pythagorean Theorem  along with the values of x which we just found above.

2445_related rates.png

Now all that we ought to do is plug into (1) and solve out for  y′ .

2 (7 ) ( -1/4)+2(√176)y' =   0            ⇒          y′ =      7/4/√176 = 7/4√176 = 0.1319 ft/sec

Notice as well that we got the accurate sign for y′.  If we'd gotten a -ve then we'd have known that we had committed a mistake and we could go back & look for it.


Related Discussions:- Example of pythagorean theorem

Factor expressions involving large powers, Factor Expressions Involving Lar...

Factor Expressions Involving Large Powers, Radicals, and Trig Functions You can use substitution to factor expressions involving large powers, radicals, and trig functions

#title.heat loss in a cylindrical pipe., briefly explain how the famous equ...

briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived

Venn diagram, A venn diagram is a pictorial representation of the sam...

A venn diagram is a pictorial representation of the sample space of an experiment. It is usually drawn as a rectangular figure representing the sample space and it cont

Solve out the linear equations, Solve out each of the following equations. ...

Solve out each of the following equations.                3( x + 5)= 2 ( -6 - x ) - 2x Solution In the given problems we will explained in detail the first problem and t

Add or subtract operations for complex numbers, performs the mentioned oper...

performs the mentioned operation and write the answers in standard form. ( -4 + 7 i ) + (5 -10 i ) Solution Actually there isn't much to do here other than add or subt

Application of derivatives, the base b of a triangle increases at the rate ...

the base b of a triangle increases at the rate of 2cm per second, and height h decreases at the rate of 1/2 cm per second. Find rate of change of its area when the base and height

Find the area enclosed between two concentric circles, Find the area enclos...

Find the area enclosed between two concentric circles of radii 3.5cm, 7cm. A third  concentric circle is drawn outside the 7cm circle so that the area enclosed between it and the 7

Determine the angle between dec, Using the example provided below, if the m...

Using the example provided below, if the measure ∠AEB = 5x + 40 and ∠BEC = x + 20, determine m∠DEC. a. 40° b. 25° c. 140° d. 65° c. The addition of the measurem

Pendulum, how many pendulum swings will it take to walk across the classroo...

how many pendulum swings will it take to walk across the classroom

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd