Example of optimization , Mathematics

Assignment Help:

A piece of pipe is carried down a hallway i.e 10 feet wide.  At the ending of the hallway the there is a right-angled turn & the hallway narrows down to 8 feet wide. What is the longest pipe which can be carried (always keeping it horizontal) around the turn in the hallway?

Solution

Let's begin with a sketch of the situation therefore we can obtain a grip on what's going on and how we will solve this.

345_tanglent1.png

The largest pipe which can go around the turn will do therefore in the position illustrates above.  One end will be touching the outer wall of the hall way at A & C and the pipe will contact the inner corner at B. Let's suppose that the length of the pipe in the little hallway is Lwhile L2  is the length of the pipe into the large hallway. Then the pipe has a length of L = L1 + L2 .

Now, if θ = 0 then the pipe is totally in the wider hallway and we can illustrates that as θ → 0

54_tanglent.png

then L → ∞ .  Similarly, if θ = ∏/2 the pipe is totally in the narrow hallway and as θ → ∏/2   we also have L → ∞ .  Therefore, somewhere in the interval 0 < θ < ∏/2    is an angle that will minimize L and oddly sufficient i.e. the length that we're after. The largest pipe which will fit around the turn will actually be the minimum value of L.

The constraint for this problem is not so obvious and there are in fact two of them.  The constraints for this difficulty are the widths of the hallways.  We'll utilize these to obtain an equation for L in terms of θ & then we'll minimize this new equation.

Therefore, by using basic right triangle trig we can illustrates that,

L1 = 8 sec θ           L2  = 10 csc θ        ⇒       L = 8 sec θ + 10 csc θ

Therefore, differentiating L gives,

                           L′ = 8 sec θ tan θ -10 csc θ cot θ

Setting this equivalent to zero and solving out specified,

                    8 sec θ tan θ = 10 csc θ cot θ

sec θ tan θ /csc θ cot θ = 10/8

sin θ tan2 θ /cos θ =5/4           ⇒         tan3 θ = 1.25

Solving for θ gives,

Therefore, if θ = 0.8226 radians then the pipe will contain a minimum length and will just fit around the turn. Anything larger will not fit about the turn that's why the largest pipe that can be carried around the turn is,

                              L = 8 sec (0.8226 ) + 10 csc (0.8226) = 25.4033 feet


Related Discussions:- Example of optimization

Build an equation for a hyperboloid of two sheets, 1. Build an equation for...

1. Build an equation for a hyperboloid of two sheets with the following properties: a. The central axis of the hyperboloid is the y-axis b. The two sheets are 4 units apart, an

What is angles, What is Angles? An angle is made up of two rays with a ...

What is Angles? An angle is made up of two rays with a common endpoint, which is called the vertex. The sides of the angle are rays. An angle is denoted by "θ". When two li

Comercial maths, solve a trader purchases coffee at the rate of Rs. 350 per...

solve a trader purchases coffee at the rate of Rs. 350 per kg and mixes it with chicory bought at the rate of Rs.750 per kg in the ratio 5:2.If he sells the mixture at the rate of

Classify linear or nonlinear, Question: Classify the following differen...

Question: Classify the following differential equations as linear/nonlinear. Also, what is the order of the following differential equations? Xy'-2y =x Xy'' -2y' =xsin(y)

Bussiness, How do these websites help the company strengthen its relationsh...

How do these websites help the company strengthen its relationships with its stakeholders? List the website(s) that you previewed and give examples to support your answers. Who are

How organize data by circle graphs, Q. How organize data by Circle Graphs? ...

Q. How organize data by Circle Graphs? Ans. Circle graphs, or pie charts, are another way of organizing data sets into an easy-to-read format. They make it very easy to c

Making equally sized groups-prerequisites for multiplication, Making Equall...

Making Equally Sized Groups :  By the time children reach Class 1 or 2, they would have had many experiences of pairs of objects-pairs of shoes, pairs of eyes, ears, arms, legs, w

Example of quadratic polynomial, Factor following.                    x ...

Factor following.                    x 2 - 20 x + 100 Solution In this case we've got three terms & it's a quadratic polynomial.  Notice down as well that the constant

Find the probability , 1.  What is the probability that the two beverages w...

1.  What is the probability that the two beverages will be of the same kind? 2.  What is the probability that the two beverages will be different? 3.  What is the probability

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd