Example of one-to-one correspondence, Mathematics

Assignment Help:

An educator placed 10 pebbles in a row and asked four-year-old Jaswant to count how many there were. She asked him to touch the pebbles .while counting them. Jaswant counted the pebbles thrice and came up with a different answer each time. What was happening was that he either left out a pebble while counting, or counted a pebble twice. His counting was something like the following one two three four five, six seven eight.

 

Why do you think Jaswant counted in this yay ?

 

Children like Jaswant have not grasped the idea that each object has to be touched only once during counting, that no object can be left untouched and that only one number name has to be recited upon touching each pebble. In other words, they have yet to understand the concept of one-to-one correspondence. To help them grasp this concept, you need to give them several experiences in setting up objects in one-to-one correspondence. This should be done before you expect them to learn counting, and while teaching them how to count.

 

As part of understanding one-to-one correspondence, children need to understand the meaning of 'many and few', 'more than', 'less than' and 'as many as'. Many everyday experiences help children understand these concepts -when they check whether there are as many plates as the number of people to be fed, when they divide up sweets equally among their friends, and so on.

 

We need to extend these experiences. Let us look at some activities for this purpose.

 

1 Lay out a row of pebbles and ask the child to make another row of as many sticks as the first one.

 

Ask the child to lay out as many leaves (or beads) as the number of' children in the group.

 

2 You can draw a set of rabbits and one of carrots. Then you could ask the child to connect each carrot with a rabbit by a line.

 

Such activities will help the child to visually understand what is involved in one-to-one correspondence.

 

Whatever the activity, we must encourage the children to talk about what they are doing. Ask children questions like "Are there as many leaves as the number of children?" or "Which are more-the leaves or the beads?" during the activities. This helps to strengthen their understanding.


Related Discussions:- Example of one-to-one correspondence

Example of the invisible effort, Imagine a time in history when the number ...

Imagine a time in history when the number system had not yet evolved a farmer needed to keep track of his cattle. What would he do to figure out whether his entire rattle returned

Modeling - nonhomogeneous systems, Under this section we're going to go bac...

Under this section we're going to go back and revisit the concept of modeling only now we're going to look at this in light of the fact as we now understand how to solve systems of

Rejection and acceptance regions, Rejection and Acceptance regions All ...

Rejection and Acceptance regions All possible values which a test statistic may either suppose consistency along with the null hypothesis as acceptance region or lead to the re

Calculus, Determine the linear approximation for f(x)= sin delta at delta =...

Determine the linear approximation for f(x)= sin delta at delta =0

How long will he have to ride to burn 750 calories, Jeff burns 500 calories...

Jeff burns 500 calories per hour bicycling. How long will he have to ride to burn 750 calories? To find out the number of hours required to burn 750 calories, divide 750 throug

Domain and range of a relation, Consider R be a relation from A to B, that ...

Consider R be a relation from A to B, that is, take R A Χ B. Then Domain R = {a: a € A, (a, b) € R for any b € B} i.e. domain of R is the set of all the first components of

Logarithmic functions- general properties, Logarithmic functi...

Logarithmic functions have the following general properties If y = log a x, a > 0 and a ≠1, then The domain of the function

Circls, in a given figure a,b,c and d are points on a circle such that ABC ...

in a given figure a,b,c and d are points on a circle such that ABC =40 and DAB= 60 find the measure of DBA

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd