Example of one-to-one correspondence, Mathematics

Assignment Help:

An educator placed 10 pebbles in a row and asked four-year-old Jaswant to count how many there were. She asked him to touch the pebbles .while counting them. Jaswant counted the pebbles thrice and came up with a different answer each time. What was happening was that he either left out a pebble while counting, or counted a pebble twice. His counting was something like the following one two three four five, six seven eight.

 

Why do you think Jaswant counted in this yay ?

 

Children like Jaswant have not grasped the idea that each object has to be touched only once during counting, that no object can be left untouched and that only one number name has to be recited upon touching each pebble. In other words, they have yet to understand the concept of one-to-one correspondence. To help them grasp this concept, you need to give them several experiences in setting up objects in one-to-one correspondence. This should be done before you expect them to learn counting, and while teaching them how to count.

 

As part of understanding one-to-one correspondence, children need to understand the meaning of 'many and few', 'more than', 'less than' and 'as many as'. Many everyday experiences help children understand these concepts -when they check whether there are as many plates as the number of people to be fed, when they divide up sweets equally among their friends, and so on.

 

We need to extend these experiences. Let us look at some activities for this purpose.

 

1 Lay out a row of pebbles and ask the child to make another row of as many sticks as the first one.

 

Ask the child to lay out as many leaves (or beads) as the number of' children in the group.

 

2 You can draw a set of rabbits and one of carrots. Then you could ask the child to connect each carrot with a rabbit by a line.

 

Such activities will help the child to visually understand what is involved in one-to-one correspondence.

 

Whatever the activity, we must encourage the children to talk about what they are doing. Ask children questions like "Are there as many leaves as the number of children?" or "Which are more-the leaves or the beads?" during the activities. This helps to strengthen their understanding.


Related Discussions:- Example of one-to-one correspondence

Limits-of-sum, limit 0 to 2(3x^2+2) Solution) integrate 3x^2 to x^3 and...

limit 0 to 2(3x^2+2) Solution) integrate 3x^2 to x^3 and 2 to 2x and apply the limit from 0 to 2 answer is 12.

Create a circular table with no restrictions, 1. Four different written dri...

1. Four different written driving tests are administered by a city. One of these tests is selected at random for each applicant for a drivers license. If a group of 2 women and 4 m

Quadratic equation, can anyone explain me the concept of quadratic equation...

can anyone explain me the concept of quadratic equation?

Tchebyshev distance, Tchebyshev Distance (Maximum Travel Distance per Trip ...

Tchebyshev Distance (Maximum Travel Distance per Trip Using Rectilinear Distance): It can be calculated by using following formula: d(X, Pi) = max{|x - ai|, |y - bi|} (Source

Recursively, Let a 0 , a 1 ::: be the series recursively defined by a 0 =...

Let a 0 , a 1 ::: be the series recursively defined by a 0 = 1, and an = 3 + a n-1 for n ≥ 1. (a) Compute a 1 , a 2 , a 3 and a 4 . (b) Compute a formula for an, n ≥ 0.

#According to the CDC there were 597, Ask question #Minimum 100 words acceA...

Ask question #Minimum 100 words acceAccording to the CDC there were 597,689 deaths in the US in 2010 attributed to heart disease. a) Given That the US population in 2010 was clos

Fermat''s theorem, Fermat's Theorem : If  f ( x ) contain a relative extre...

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f

Cartesian product of sets, The Cartesian product (also called as the cross ...

The Cartesian product (also called as the cross product) of two sets A and B, shown by AΧB (in the similar order) is the set of all ordered pairs (x, y) such that x€A and y€B. What

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd