Example of mixing problems, Mathematics

Assignment Help:

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has a salt concentration of 1/5 (1 + cos (t)) lbs/gal. If a well mixed solution goes away the tank at a rate of 6 gal/hr, how much salt is in the tank while it overflows?

Solution

Firstly, let's address the "well mixed solution" bit. It is the assumption that was mentioned earlier. We are going to suppose that the instant the water enters the tank this somehow immediately disperses evenly throughout the tank to provide a uniform concentration of salt into the tank at every point.  Again, it will evidently not be the case in actuality, but it will permit us to do the problem.

Now, to set up the Initial Value Problem that we'll require to solve to get Q(t) we'll require the flow rate of the water entering as we've got that the concentration of the salt into the water entering when we've got that, the flow rate of the water leaving and the concentration of the salt into the water exiting but we don't have this yet.

Thus, we first require determining the concentration of the salt in the water exiting the tank. As we are assuming a uniform concentration of salt in the tank the concentration at some point into the tank and thus in the water exiting is specified by,

Concentration = Amount of salt in the tank at any time, t/Volume of water in the tank at any time, t

 The amount at any time t is simple it's just Q(t). The volume is also pretty simple. We begin with 600 gallons and each hour 9 gallons enters and 6 gallons leave. Thus, if we use t in hours, each hour 3 gallons enters the tank, or at any time t there as 600 + 3t gallons of water into the tank.

Thus the Initial Value Problem for this condition is:

Q'(t) = 9 ((1/5)(1 + cos(t))) - 6 (Q(t)/(600 + 3t)),                   Q(0) = 5

Q'(t) = 9/5 ( 1 + cos (t)) - (2Q(t))/(200 + t),                           Q(0) = 5

It is a linear differential equation and this isn't too hard to solve hopefully. We will demonstrate most of the details, although leave the explanation of the solution process out.  If you require a refresher on solving linear first order differential equations go back and see that section.

Q'(t) + ((2Q(t))/(200 + t)) = 9/5(1 + cos(t))

µ(t) =  e∫(2/(200 + t)) dt = e2In(200 + t)) =(200 + t)2

∫((200 + t)2 Q(t))' dt = ∫(9/5(200+ t)2 (1 + cos(t))dt

 (200 + t)2 Q(t) = 9/5((1/3 (200 + t)3) + ((200 + t)2 sin(t)) + (2 (200 + t) cos(t)) - (2 sin(t))) + c

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2)) +(c/(200 + t)2)

Thus, here's the general solution. Here, apply the initial condition to find the value of the constant, c.

5 = Q(0) =  9/5((1/3 (200) + (2/200)) + c/(200)2

C= - 4600720

Hence, the amount of salt into the tank at any time t as:

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2))-(4600720/(200 + t)2)

Now, the tank will overflow at t = 300 hrs. The amount of salt in the tank at that time is.

Q (300) = 279.797 lbs

There is a graph of the salt into the tank before it overflows.

1351_Example of Mixing Problems.png

Remember that the complete graph must have small oscillations in it as you can notice in the range from 200 to 250. The scale of the oscillations though was small adequate that the program used to produce the image had trouble demonstrating all of them.

The work was a little messy along with that one, but they will frequently be that way so don't get excited regarding it. This first illustration also assumed that nothing would change during the life of the process. That, of course will generally not be the case.


Related Discussions:- Example of mixing problems

Determine the height of the washington monument, Determine the height of th...

Determine the height of the Washington Monument to the nearest tenth of a meter. a. 157.8 m b. 169.3 m c. 170.1 m d. 192.2 m c. The height of the monument is the add

Determine the team having similar code-pigeon hole principle, Shirts number...

Shirts numbered consecutively from 1 to 20 are worn by 20 members of a bowling league. While any three of these members are selected to be a team, the league aims to use the sum of

Systems of differential equations, In the introduction of this section we b...

In the introduction of this section we briefly talked how a system of differential equations can occur from a population problem wherein we remain track of the population of both t

What day?, together, pearl and harvey are going to visit their aunt on sund...

together, pearl and harvey are going to visit their aunt on sunday. If Pearl visits their aunt every 6 days, while harvey every 8 days, on what day will they visit their aunt toget

Young entrepreneur, As a creative and innovative entrepreneur, we are requi...

As a creative and innovative entrepreneur, we are required to invent or improvise a product or service that benefits the society and the economy, so what do you think is it?

???, a deposit of 10,000 was made to an account the year you were born afte...

a deposit of 10,000 was made to an account the year you were born after 12 years the account is worth 16,600 what is the simple interest rate did the account earn?

Polynomial : f(x).f(1/x), A polynomial satisfies the following relation f(x...

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3) Ans) The required polynomial is x^5 +1. This polynomial satisfies the condition state

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd