Example of mixing problems, Mathematics

Assignment Help:

A 1500 gallon tank primarily holds 600 gallons of water along with 5 lbs of salt dissolved into it. Water enters the tank at a rate of 9 gal/hr and the water entering the tank has a salt concentration of 1/5 (1 + cos (t)) lbs/gal. If a well mixed solution goes away the tank at a rate of 6 gal/hr, how much salt is in the tank while it overflows?

Solution

Firstly, let's address the "well mixed solution" bit. It is the assumption that was mentioned earlier. We are going to suppose that the instant the water enters the tank this somehow immediately disperses evenly throughout the tank to provide a uniform concentration of salt into the tank at every point.  Again, it will evidently not be the case in actuality, but it will permit us to do the problem.

Now, to set up the Initial Value Problem that we'll require to solve to get Q(t) we'll require the flow rate of the water entering as we've got that the concentration of the salt into the water entering when we've got that, the flow rate of the water leaving and the concentration of the salt into the water exiting but we don't have this yet.

Thus, we first require determining the concentration of the salt in the water exiting the tank. As we are assuming a uniform concentration of salt in the tank the concentration at some point into the tank and thus in the water exiting is specified by,

Concentration = Amount of salt in the tank at any time, t/Volume of water in the tank at any time, t

 The amount at any time t is simple it's just Q(t). The volume is also pretty simple. We begin with 600 gallons and each hour 9 gallons enters and 6 gallons leave. Thus, if we use t in hours, each hour 3 gallons enters the tank, or at any time t there as 600 + 3t gallons of water into the tank.

Thus the Initial Value Problem for this condition is:

Q'(t) = 9 ((1/5)(1 + cos(t))) - 6 (Q(t)/(600 + 3t)),                   Q(0) = 5

Q'(t) = 9/5 ( 1 + cos (t)) - (2Q(t))/(200 + t),                           Q(0) = 5

It is a linear differential equation and this isn't too hard to solve hopefully. We will demonstrate most of the details, although leave the explanation of the solution process out.  If you require a refresher on solving linear first order differential equations go back and see that section.

Q'(t) + ((2Q(t))/(200 + t)) = 9/5(1 + cos(t))

µ(t) =  e∫(2/(200 + t)) dt = e2In(200 + t)) =(200 + t)2

∫((200 + t)2 Q(t))' dt = ∫(9/5(200+ t)2 (1 + cos(t))dt

 (200 + t)2 Q(t) = 9/5((1/3 (200 + t)3) + ((200 + t)2 sin(t)) + (2 (200 + t) cos(t)) - (2 sin(t))) + c

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2)) +(c/(200 + t)2)

Thus, here's the general solution. Here, apply the initial condition to find the value of the constant, c.

5 = Q(0) =  9/5((1/3 (200) + (2/200)) + c/(200)2

C= - 4600720

Hence, the amount of salt into the tank at any time t as:

Q(t) = 9/5((1/3 (200 + t)) + sin(t) + ((2cos (t))/(200 + t)) - ((2sin(t))/(200 + t)2))-(4600720/(200 + t)2)

Now, the tank will overflow at t = 300 hrs. The amount of salt in the tank at that time is.

Q (300) = 279.797 lbs

There is a graph of the salt into the tank before it overflows.

1351_Example of Mixing Problems.png

Remember that the complete graph must have small oscillations in it as you can notice in the range from 200 to 250. The scale of the oscillations though was small adequate that the program used to produce the image had trouble demonstrating all of them.

The work was a little messy along with that one, but they will frequently be that way so don't get excited regarding it. This first illustration also assumed that nothing would change during the life of the process. That, of course will generally not be the case.


Related Discussions:- Example of mixing problems

Using a number strip substract , Another aid that can help children pract...

Another aid that can help children practise subtraction is the number strip. TGS can be used to improve their ability to count backwards. For example, subtracting 4 from 9 means

Fermats theorem, Fermat's Theorem  If f(x) has a relative extrema at x...

Fermat's Theorem  If f(x) has a relative extrema at x = c and f′(c) exists then x = c is a critical point of f(x). Actually, this will be a critical point that f′(c) =0.

High self-esteem helps learning-how do children learn?, High Self-esteem He...

High Self-esteem Helps Learning :  Consider Ajay, a student of Class 2. He is constantly told by his irritated father, "How stupid you are! You don't even understand this! Even yo

Evaluate subsequent proportion, Evaluate subsequent proportion: Examp...

Evaluate subsequent proportion: Example 2: If 5 pounds of apples cost 80 cents, how much will 7 pounds cost? Solution: By using x for the cost of 7 pounds of appl

Method to determine solution is absolute value, Method to determine solutio...

Method to determine solution is absolute minimum/maximum value Let's spend a little time discussing some methods for determining if our solution is in fact the absolute minimum

What is the probability that the product xy less than 9, A number x is ...

A number x is selected from the numbers 1,2,3 and then a second number y is randomly selected  from  the  numbers  1,4,9. What  is  the  probability that  the product xy of the two

Fractions, what is the lowest term of 11/121

what is the lowest term of 11/121

Damping force, The subsequent force that we want to consider is damping. Th...

The subsequent force that we want to consider is damping. This force may or may not be there for any specified problem. Dampers work to counteract any movement. There are some w

Estimate round to the nearest tenth of an inch, One inch equals 2.54 centim...

One inch equals 2.54 centimeters. The dimensions of a table made in Europe are 85 cm huge by 120 cm long. What is the width of the table in inches? Round to the nearest tenth of an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd