Example of mixing problems, Algebra

Assignment Help:

How much of a 50% alcohol solution should we mix with 10 gallons of a 35% solution to get a 40% solution?

Solution

Let x is the amount of 50% solution which we need.  It means that there will be gallons of the 40% solution once we're done mixing the two.

Following is the basic work equation for this problem.

1357_Mixing Problems1.png

Now, plug in the volumes & solve for x.

0.5x + 0.35 (10) =0.4 ( x + 10)

0.5x + 3.5 + 0.4x + 4

0.1x + 0.5

x =0.5/0.1 = 5 gallons

Thus, we required 5 gallons of the 50% solution to get a 40% solution.


Related Discussions:- Example of mixing problems

Example of absolute value inequalities, Solve following.  2 x - 4 = 10 ...

Solve following.  2 x - 4 = 10 Solution There actually isn't much to do other than plug into the formula.  As with equations p merely represents whatever is within the a

Math, (-3) EVALUATE X3 -2X2 + 6X -64

(-3) EVALUATE X3 -2X2 + 6X -64

FACTORING, HOW TO FACTOR THE GIVEN

HOW TO FACTOR THE GIVEN

Math question, Do you have any helpful hints for solving equations?

Do you have any helpful hints for solving equations?

DEMAND AND SUPPLY, Qs1=-7+P1 (2) Qd1=15-P1+2P2+P3 (3) Qs1=Qd1

Qs1=-7+P1 (2) Qd1=15-P1+2P2+P3 (3) Qs1=Qd1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd