Example of mixing problems, Algebra

Assignment Help:

How much of a 50% alcohol solution should we mix with 10 gallons of a 35% solution to get a 40% solution?

Solution

Let x is the amount of 50% solution which we need.  It means that there will be gallons of the 40% solution once we're done mixing the two.

Following is the basic work equation for this problem.

1357_Mixing Problems1.png

Now, plug in the volumes & solve for x.

0.5x + 0.35 (10) =0.4 ( x + 10)

0.5x + 3.5 + 0.4x + 4

0.1x + 0.5

x =0.5/0.1 = 5 gallons

Thus, we required 5 gallons of the 50% solution to get a 40% solution.


Related Discussions:- Example of mixing problems

Find out the domain of function, Find out the domain of each of the followi...

Find out the domain of each of the following functions. g( x ) = x+3 /x 2 + 3x -10 Solution The domain for this function is all of the values of x for which we don't hav

Math, what does x when y=2x=3

what does x when y=2x=3

Standard deviation, what is the standard deviation of a graph

what is the standard deviation of a graph

Trinomials, Simplify 3(x-2)to the second -2(x+1)

Simplify 3(x-2)to the second -2(x+1)

Distribution Property, I really need help in this question (-5d + 1)(-2) I ...

I really need help in this question (-5d + 1)(-2) I am really confused

Example of synthetic division, Using synthetic division do following  divis...

Using synthetic division do following  divisions. Divide 2x 3 - 3x - 5  by x + 2 Solution Okay in this case we have to be a little careful here. We have to divide by a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd