Example of mixing problems, Algebra

Assignment Help:

How much of a 50% alcohol solution should we mix with 10 gallons of a 35% solution to get a 40% solution?

Solution

Let x is the amount of 50% solution which we need.  It means that there will be gallons of the 40% solution once we're done mixing the two.

Following is the basic work equation for this problem.

1357_Mixing Problems1.png

Now, plug in the volumes & solve for x.

0.5x + 0.35 (10) =0.4 ( x + 10)

0.5x + 3.5 + 0.4x + 4

0.1x + 0.5

x =0.5/0.1 = 5 gallons

Thus, we required 5 gallons of the 50% solution to get a 40% solution.


Related Discussions:- Example of mixing problems

Determine the zeroes of polynomials, Example : determine the zeroes of foll...

Example : determine the zeroes of following polynomials. P ( x)= 5x 5 - 20x 4 +5x3 + 50x2 - 20x - 40 = 5 (x + 1) 2 ( x - 2) 3 Solution In this the factoring has been

Work- rate problems, Actually these problems are variants of the Distance/R...

Actually these problems are variants of the Distance/Rate problems which we just got done working.  The standard equation which will be required for these problems is, As y

Find out the domain of function, Find out the domain of each of the followi...

Find out the domain of each of the following functions. g( x ) = x+3 /x 2 + 3x -10 Solution The domain for this function is all of the values of x for which we don't hav

Natural log, e^4x-5 -8=14403 Solution in Natural Log

e^4x-5 -8=14403 Solution in Natural Log

Quadratic equation, solve 4x2+12x =0by using quadratic formula

solve 4x2+12x =0by using quadratic formula

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd