Example of linear equations, Algebra

Assignment Help:

In a certain Algebra class there is a total 350 possible points. These points come through 5 homework sets which are worth 10 points each and 3 hour exams that are worth 100 points each.  A student has attained homework scores of 4, 8, 7, 7, & 9 and the first two exam scores are 78 & 83.  Supposing that grades are assigned according to the standard scale and there are no weights assigned to any of the grades is it probable for the student to attain an A in the class and if so what is the minimum score on the third exam which will give an A? What about a B?

Solution

Let's begin by defining p to be the minimum needed score on the third exam.

Now, let's remember how grades are set.  As there are no weights or anything on the grades, the grade will be set by first calculating the following percentage.

                            actual points            / total possible points  =  grade percentage

As we are using the standard scale if the grade percentage is 0.9 or higher the student will get an A.  Similarly if the grade percentage is among 0.8 & 0.9 the student will get a B.

We know that the overall possible points is 350 and the student contain a total points (by including the third exam) of,

                                 4 + 8 + 7 +7 +9 + 78 + 83 + p = 196 + p

The smallest possible percentage for an A is 0.9 and thus if  p is the minimum needed score on the third exam for an A we will have the given equation.

                                                  196 + p/350 = 0.9

It is a linear equation which we will need to solve for p.

196 + p = 0.9 (350)= 315                  ⇒          p = 315 -196 = 119

Thus, the minimum needed score on the third exam is 119.  It is a problem as the exam is worth only 100 points.  In other terms, the student will not be getting an A in the Algebra class.

Now let's verify if the student will get a B.  In this case the minimum percentage is 0.8.  Thus, to determine the minimum required score on the third exam for a B we will have to solve,

                                   196 + p /350 = 0.8

Solving out this for p gives,

                                 196 + p = 0.8 (350) =280           ⇒        p = 280 -196 =84

Thus, it is possible for the student to get a B in the class. All that the student will have to do is get at least an 84 on the third exam.


Related Discussions:- Example of linear equations

Properties of exponential functions, Properties of f( x ) = b x 1. The...

Properties of f( x ) = b x 1. The graph of f( x ) will always have the point (0,1).  Or put another way, f(0) = 1 in spite of of the value of b. 2. For every possible b b x

Logaritmos, si el log de 28 en base 14 es a cuanto es el log de 16 en base ...

si el log de 28 en base 14 es a cuanto es el log de 16 en base 49

Exponential functions, Definition of an exponential function If b is an...

Definition of an exponential function If b is any number like that b = 0 and b ≠ 1 then an exponential function is function in the form,

Algerbra I, I have 4 word problem on my review that I cant figure out. Can ...

I have 4 word problem on my review that I cant figure out. Can you help me?

Percents, How do I figure out what is 20% of 100?

How do I figure out what is 20% of 100?

DISSIMILAR RADICALS, HOW TO ADD SUBTRACT MULTIPLY AND DIVEDE DISSIMILAR RAD...

HOW TO ADD SUBTRACT MULTIPLY AND DIVEDE DISSIMILAR RADICALS?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd