Example of least common denominator, Algebra

Assignment Help:

Example :  Solve (x+ 1 / x - 5 )≤ 0 .

Solution

Before we get into solving these we need to point out that these don't solve in the similar way which we've solve equations which contained rational expressions.  Along with equations the first thing which we always did was clear out the denominators by multiplying by the least common denominator. That won't work along with these however.

As we don't know the value of x we can't multiply both of the sides by anything which contains an x. Recall that if we multiply both of the sides of an inequality by a negative number we will have to switch the direction of the inequality.  Though, as we don't know the value of x we don't know if the denominator is +ve or -ve and thus we won't know if we have to switch the direction of the inequality or not.  Actually, to make matters worse, the denominator will be both +ve and -ve for values of x in the solution & so that will create real problems.

Thus, we have to leave the rational expression in the inequality.

Now, the basic procedure here is the same as along with polynomial inequalities. The first step is to obatin a zero on one side and writes the other side as a single rational inequality. It has already been done for us here.

The following step is to factor the numerator & denominator as much as possible.  Again, it has already been done in this case.

The following step is to determine where both the numerator and the denominator are zero.  In this case these values are.

                                 numerator : x= -1          denominator : x = 5

Now, we have these numbers for many reasons.  First, just like with polynomial inequalities these are the only numbers where the rational expression might change sign.  Thus, we'll construct a number line using these points to mention ranges out of which to pick test points just like we did along with polynomial inequalities.

There is another cause for needing the value of x that make the denominator zero however.  No matter what else is going on here we do have a rational expression and this means we have to avoid division by zero and thus knowing where the denominator is zero will give us the values of x to ignore for this.

Following is the number line for this inequality.

1973_Example of least common denominato.png

Thus, we require regions which make the rational expression negative. It means the middle region. Also, as we've got an "or equal to" part in the inequality we also have to include where the inequality is zero, thus this means we include x = -1.  Notice that we will also have to avoid x = 5 as that gives division by zero.

The solution for this inequality is following,

                                                           -1 ≤ x < 5                           [-1, 5)

Once again, it's significant to note that we actually do need to test each of the region and not just suppose that the regions will alternate in sign.

Next we have to take a look at some instance that doesn't already contain a zero on one side of the inequality.


Related Discussions:- Example of least common denominator

Rings homomorphisms, if A is an ideal and phi is onto S,then phi(A)is an id...

if A is an ideal and phi is onto S,then phi(A)is an ideal.

1, f(x)=5x-3 g(x)=-2x^2-3 find f(-3 )and g(5)

f(x)=5x-3 g(x)=-2x^2-3 find f(-3 )and g(5)

Slopes, determine slope of 2y = -x + 10

determine slope of 2y = -x + 10

Find out the partial fraction decomposition, Find out the partial fraction ...

Find out the partial fraction decomposition of each of the following. 8x 2 -12/( x( x 2 + 2 x - 6) Solution In this case the x which sits in the front is a linear term

Problem solving .use multiplacation, ellie uses 12.5 pounds of potatoes to ...

ellie uses 12.5 pounds of potatoes to make mashed potatoes. she uses one-tenth as many pounds of butter as potatoes. how many pounds of butter does ellie use

Determine the zeroes of polynomials, Example : determine the zeroes of foll...

Example : determine the zeroes of following polynomials. P ( x)= 5x 5 - 20x 4 +5x3 + 50x2 - 20x - 40 = 5 (x + 1) 2 ( x - 2) 3 Solution In this the factoring has been

Ixl, 2.51 x 10^14 >

2.51 x 10^14 >

Finite Mathematics, Suppose that a company has a fixed cost of $150 per day...

Suppose that a company has a fixed cost of $150 per day and a variable cost of x^2+x. Further suppose that the revenue function is R(x) = xp and the price per unit is given by p =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd