Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
A parent shows his child four pencils. He places them in a row in front of her and says "one" as he points to the first pencil, "two" as he points to the second one, "three" as he points to the third one, and "four" as he points to the fourth. He repeats this for the child. Then, with an encouraging smile he asks, "Now give me two pencils!" The child picks up the second pencil in the law and gives it to him. She is quite baffled when the parent says, "No child! I said two pencils. Here (adding another pencil), now they are two." "Are /they?", wonders the child. "But did not he just say that that pencil was 'two' ?"
Why do you think the child in the example above was confused ?
Think about what happens when we set number names and objects in one-to one correspondence. We use the (number names as temporary labels for the objects. In the example-above, the pencil has nothing in common with the number "two"; it is just the second object in the ordered row of objects. But when we say "Give me two pencils", we expect the child to mentally separate the label "two" from the second pencil, and then dissociate it with any two pencils. This way of using number names in two ways is quite confusing to a child who is just beginning to deal with numbers. How can we sort out this confusion?
Why don't you try an exercise now?
i not knoe examples
prove that cos(a)/1-sin(a)=tan(45+A/2)
Consider the wave equation u_tt - u_xx = 0 with u(x, 0) = f(x) = 1 if -1 Please provide me a detailed answer. I had worked the most part of this question and the only I would like
Properties of Vector Arithmetic If v, w and u are vectors (each with the same number of components) and a and b are two numbers then we have then following properties. v →
A solid is in the form of a right circular cone mounted on a hemisphere. The radius of the hemisphere is 3.5 cm and the height of the cone is 4 cm. The solid is placed in a cylindr
Every point (x,y) on the curve y=log2 3x is transferred to a new point by the following translation (x',y')=(x+m,y+n), where m and n are integers. The set of (x',y') form the curve
A solution to a differential equation at an interval α Illustration 1: Show that y(x) = x -3/2 is a solution to 4x 2 y′′ + 12xy′ + 3 y = 0 for x > 0. Solution : We'll
I need help. Is there anyone there to help me?
how to write assignment of the application of differentiation in science
CONSTANTS OF INTEGRATION Under this section we require to address a couple of sections about the constant of integration. During most calculus class we play pretty quick and lo
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd