Example of integration strategy - integration techniques, Mathematics

Assignment Help:

Evaluate the subsequent integral.

∫ (tan x/sec4 x / sec4 x)  dx

Solution

This kind of integral approximately falls into the form given in 3c.  It is a quotient of tangent and secant and we are familiar with that sometimes we can use similar methods or techniques for products of tangents and secants on quotients.

The procedure from that section tells us that if we have even powers of secant to strip two of them off and transform the rest to tangents. That won't able to work here. We can split two secants off, but they would be in the denominator and they would not do us any good there.  Keep in mind that the point of splitting them off is thus they would be there for the substitution u = tan x .  That needs them to be in the numerator.  Thus, that won't work and so we will have to find out another solution method.

Actually there are two solution methods to this integral depending upon how you want to go about it. We'll take a look at both.

Solution 1

In this solution technique we could just convert all to sines and cosines and see if that provides us an integral we can deal with.

∫(tan x / sec4 x) (dx)

= ∫ (sin x / cos x) cos4 x dx

= ∫ sin x cos3 x dx                                u=cos x

= -∫ u3 du

= - ¼ cos4 x + c

Note that just transforming to sines and cosines won't all time work and if it does it won't always work this adequately.  Frequently there will be so many works that would require to be done to complete the integral.

Solution 2

This solution technique goes back to dealing with secants and tangents.  Let us notice that if we had a secant in the numerator we could just employ u = sec x as a substitution and it would be a quite quick and simple substitution to use. We do not have a secant in the numerator.  Though, we could very easily get a secant in the numerator merely by multiplying the numerator and denominator by secant.

∫ (tan x / sec4 x) dx

= ∫ (tan x sec x / sec5 x) dx                                          u = sec x

= ∫ 1/u5 (du)

= - (1/4) (1/sec4 x) + c

 = - ¼ cos4 x+c


Related Discussions:- Example of integration strategy - integration techniques

Ascending order, arrange these numbers in ascending order. -5 -7 1 2 15 0 -...

arrange these numbers in ascending order. -5 -7 1 2 15 0 - 25

Definition of limit, Definition of limit : Consider that the limit of f(x)...

Definition of limit : Consider that the limit of f(x) is L as x approaches a & write this as provided we can make f(x) as close to L as we desire for all x adequately clos

Universal set, Universal set The term refers to the set which contains...

Universal set The term refers to the set which contains all the elements such an analyst wishes to study.  The notation U or ξ is usually used to denote universal sets.

Calculate the amplitude of trigonometry function, Consider the trigonometri...

Consider the trigonometric function f(t) = -3 + 4 cos(Π/ 3 (t - 3/2 )). (a) What is the amplitude of f (t)? (b) What is the period of f(t)? (c) What are the maximum and mi

Fermat''s theorem, Fermat's Theorem : If  f ( x ) contain a relative extre...

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f

Parabola, please i need the answers to x^_7x+10 i want the vertex,axis of s...

please i need the answers to x^_7x+10 i want the vertex,axis of semetery,y intersect and the x intercept

Linear programming problem., Ask question #Minimum 100 words acca paper mil...

Ask question #Minimum 100 words acca paper mill produces two grades of paper viz.,xand y.Bacause of raw material restrictions, it cannot produce more than 400 tones of grade x pape

Npv, how to calculate the npv

how to calculate the npv

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd