Example of integration strategy - integration techniques, Mathematics

Assignment Help:

Evaluate the subsequent integral.

∫ (tan x/sec4 x / sec4 x)  dx

Solution

This kind of integral approximately falls into the form given in 3c.  It is a quotient of tangent and secant and we are familiar with that sometimes we can use similar methods or techniques for products of tangents and secants on quotients.

The procedure from that section tells us that if we have even powers of secant to strip two of them off and transform the rest to tangents. That won't able to work here. We can split two secants off, but they would be in the denominator and they would not do us any good there.  Keep in mind that the point of splitting them off is thus they would be there for the substitution u = tan x .  That needs them to be in the numerator.  Thus, that won't work and so we will have to find out another solution method.

Actually there are two solution methods to this integral depending upon how you want to go about it. We'll take a look at both.

Solution 1

In this solution technique we could just convert all to sines and cosines and see if that provides us an integral we can deal with.

∫(tan x / sec4 x) (dx)

= ∫ (sin x / cos x) cos4 x dx

= ∫ sin x cos3 x dx                                u=cos x

= -∫ u3 du

= - ¼ cos4 x + c

Note that just transforming to sines and cosines won't all time work and if it does it won't always work this adequately.  Frequently there will be so many works that would require to be done to complete the integral.

Solution 2

This solution technique goes back to dealing with secants and tangents.  Let us notice that if we had a secant in the numerator we could just employ u = sec x as a substitution and it would be a quite quick and simple substitution to use. We do not have a secant in the numerator.  Though, we could very easily get a secant in the numerator merely by multiplying the numerator and denominator by secant.

∫ (tan x / sec4 x) dx

= ∫ (tan x sec x / sec5 x) dx                                          u = sec x

= ∫ 1/u5 (du)

= - (1/4) (1/sec4 x) + c

 = - ¼ cos4 x+c


Related Discussions:- Example of integration strategy - integration techniques

Algebria, solve and graph the solution set 7x-4 > 5x + 0

solve and graph the solution set 7x-4 > 5x + 0

Problem Solving, Max can paint a house in 3 hours. Saria can paint a house...

Max can paint a house in 3 hours. Saria can paint a house in 5 hours. working together, how long will it take both Saria and Max to paint a house?

Size of the penumbra, With reference to Fig. 1(a) show that the magnificati...

With reference to Fig. 1(a) show that the magnification of an object is given by M=SID/SOD. With reference to Fig. 1(b) show that the size of the penumbra (blur) f is given by f

Multiple integrals, how to convert double integral into polar coordinates a...

how to convert double integral into polar coordinates and change the limits of integration

Math, what is quantity ?

what is quantity ?

Separable differential equations, We are here going to begin looking at non...

We are here going to begin looking at nonlinear first order differential equations. The first type of nonlinear first order differential equations which we will see is separable di

Continuity, Continuity : In the last few sections we've been using the te...

Continuity : In the last few sections we've been using the term "nice enough" to describe those functions which we could evaluate limits by just evaluating the function at the po

Elementary row operations, Anne, Betty and Carol went to their local produc...

Anne, Betty and Carol went to their local produce store to buy some fruit. Anne bought one pound of apples and two pounds of bananas and paid $2.11. Betty bought two pounds of appl

Taylor series, If f(x) is an infinitely differentiable function so the Tayl...

If f(x) is an infinitely differentiable function so the Taylor Series of f(x) about x=x 0 is, Recall that, f (0) (x) = f(x) f (n) (x) = nth derivative of f(x)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd