Example of integration by parts - integration techniques, Mathematics

Assignment Help:

Example of Integration by Parts - Integration techniques

Illustration1:  Evaluate the following integral.

∫ xe6x dx

Solution :

Thus, on some level, the difficulty here is the x that is in front of the exponential.  If that was not there we could do the integral.  Notice also, that in doing integration by parts anything that we wish for u will be differentiated.  Thus, it seems that choosing u = x will be a good choice as upon differentiating the x will drop out.

Here that we've selected u we know that dv will be everything else which remains.  Thus, here are the choices for u and dv also du and v.

u = x    dv = e6x dx

du = dx           v = e6x dx = 1/6e6x

Then the integral is as follow:

∫ xe6x dx = x/6 e6x - ∫ 1/6 e6x dx

= x/6 e6x - 1/36 e6x + c

Just once we have completed the last integral in the problem we will add in the constant of integration to obtain our final answer.


Related Discussions:- Example of integration by parts - integration techniques

Actual implicit solution, y 2 = t 2 - 3 is the actual implicit solution t...

y 2 = t 2 - 3 is the actual implicit solution to y'= t/y, y(2) = -1. At such point I will ask that you trust me that it is actually a solution to the differential equation. You w

Find the third vertex of a triangle, Find the third vertex of a triangle if...

Find the third vertex of a triangle if its two vertices are (-1, 4) and (5, 2) and mid point of one side is (0, 3).

Which team should get the ball at the beginning, Why is tossing a coin cons...

Why is tossing a coin considered to be a fair way of deciding which team should get the ball at the beginning of a foot ball match? Ans: equally likely because they are mutual

Example of graphing equations, Example of Graphing Equations: Example...

Example of Graphing Equations: Example: By using the above figure, find out the distance traveled if the average speed is 20 mph and the time traveled is 40 minutes. T

Area of a parallelogram x what is the height in terms of x, The area of a p...

The area of a parallelogram is x 8 . If the base is x 4 , what is the height in terms of x? Since the area of a parallelogram is A = base times height, then the area divided by

Fractions, what the answer to 1/4+1/3=3/12=?

what the answer to 1/4+1/3=3/12=?

Estimate round to the nearest tenth of an inch, One inch equals 2.54 centim...

One inch equals 2.54 centimeters. The dimensions of a table made in Europe are 85 cm huge by 120 cm long. What is the width of the table in inches? Round to the nearest tenth of an

Standard normal distribution, Q. Describe Standard Normal Distribution? ...

Q. Describe Standard Normal Distribution? Ans. The Standard Normal Distribution has a mean of 0 and a standard deviation of 1. The letter Z is often used to refer to a sta

Regression, regression line drawn as Y=C+1075x, when x was 2, and y was 239...

regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd