Example of integration by parts - integration techniques, Mathematics

Assignment Help:

Example of Integration by Parts - Integration techniques

Illustration1:  Evaluate the following integral.

∫ xe6x dx

Solution :

Thus, on some level, the difficulty here is the x that is in front of the exponential.  If that was not there we could do the integral.  Notice also, that in doing integration by parts anything that we wish for u will be differentiated.  Thus, it seems that choosing u = x will be a good choice as upon differentiating the x will drop out.

Here that we've selected u we know that dv will be everything else which remains.  Thus, here are the choices for u and dv also du and v.

u = x    dv = e6x dx

du = dx           v = e6x dx = 1/6e6x

Then the integral is as follow:

∫ xe6x dx = x/6 e6x - ∫ 1/6 e6x dx

= x/6 e6x - 1/36 e6x + c

Just once we have completed the last integral in the problem we will add in the constant of integration to obtain our final answer.


Related Discussions:- Example of integration by parts - integration techniques

Product and quotient rule, Product and Quotient Rule : Firstly let's se...

Product and Quotient Rule : Firstly let's see why we have to be careful with products & quotients.  Assume that we have the two functions f ( x ) = x 3   and g ( x ) = x 6 .

Fractions, how do you multiply fractions

how do you multiply fractions

Exponents., the (cube square root of 2)^1/2)^3

the (cube square root of 2)^1/2)^3

Simplification, 4.4238/[1.047+{1.111*[9.261/7.777]}*1.01

4.4238/[1.047+{1.111*[9.261/7.777]}*1.01

Plane and solid mensuration, the area of a triangle is 20 and its base is 1...

the area of a triangle is 20 and its base is 16. Find the base of a similar triangle whose area is 45. Given is a regular pentagon. Find the measure of angle LHIK.

Computation of covariance - ungrouped data, Computation of Covariance ...

Computation of Covariance Ungrouped Data          For a population consisting of paired ungrouped data points {X, Y} where,

Proof of root test - sequences and series, Proof of Root Test  Firstly...

Proof of Root Test  Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well n

Airthmetic progression series, Each of the series 3+5+7+..... and 4+7+10......

Each of the series 3+5+7+..... and 4+7+10.......... is continued to 100 terms find how many terms are identical. Ans) 48 terms would be common to both the series... first take co

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd