Example of integration by parts - integration techniques, Mathematics

Assignment Help:

Example of Integration by Parts - Integration techniques

Illustration1:  Evaluate the following integral.

∫ xe6x dx

Solution :

Thus, on some level, the difficulty here is the x that is in front of the exponential.  If that was not there we could do the integral.  Notice also, that in doing integration by parts anything that we wish for u will be differentiated.  Thus, it seems that choosing u = x will be a good choice as upon differentiating the x will drop out.

Here that we've selected u we know that dv will be everything else which remains.  Thus, here are the choices for u and dv also du and v.

u = x    dv = e6x dx

du = dx           v = e6x dx = 1/6e6x

Then the integral is as follow:

∫ xe6x dx = x/6 e6x - ∫ 1/6 e6x dx

= x/6 e6x - 1/36 e6x + c

Just once we have completed the last integral in the problem we will add in the constant of integration to obtain our final answer.


Related Discussions:- Example of integration by parts - integration techniques

Average cost function, Average cost function : Now let's turn our attentio...

Average cost function : Now let's turn our attention to the average cost function. If C ( x ) is the cost function for some of the  item then the average cost function is,

Division, Why do we start dividion operation from left to right?

Why do we start dividion operation from left to right?

Differentiate hyperbolic functions, Differentiate following functions. (...

Differentiate following functions. (a)  f ( x ) = 2 x 5 cosh x (b) h (t ) = sinh t / t + 1 Solution (a) f ′ ( x ) = 10x 4 cosh x + 2x 5 sinh x (b) h′ (t ) = (t

Draw a common graph f ( x ) = |x|, Graph f ( x ) = |x| Solution The...

Graph f ( x ) = |x| Solution There actually isn't much to in this problem outside of reminding ourselves of what absolute value is. Remember again that the absolute value f

Empty set, There is one final topic that we need to address as far as solut...

There is one final topic that we need to address as far as solution sets go before leaving this section. Consider the following equation and inequality.

Progressions, * 2^(1/2)*4^(1/8)*8^(1/16)*16^(1/32) =

* 2^(1/2)*4^(1/8)*8^(1/16)*16^(1/32) =

North west corner method, What is the history of North west corner method i...

What is the history of North west corner method in transportation problem? Why there are only m+n-1 solution to the transportation problem?

Limits at infinity, Limits At Infinity, Part I : In the earlier section w...

Limits At Infinity, Part I : In the earlier section we saw limits which were infinity and now it's time to take a look at limits at infinity.  Through limits at infinity we mean

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd