Example of integration by parts - integration techniques, Mathematics

Assignment Help:

Example of Integration by Parts - Integration techniques

Illustration1:  Evaluate the following integral.

∫ xe6x dx

Solution :

Thus, on some level, the difficulty here is the x that is in front of the exponential.  If that was not there we could do the integral.  Notice also, that in doing integration by parts anything that we wish for u will be differentiated.  Thus, it seems that choosing u = x will be a good choice as upon differentiating the x will drop out.

Here that we've selected u we know that dv will be everything else which remains.  Thus, here are the choices for u and dv also du and v.

u = x    dv = e6x dx

du = dx           v = e6x dx = 1/6e6x

Then the integral is as follow:

∫ xe6x dx = x/6 e6x - ∫ 1/6 e6x dx

= x/6 e6x - 1/36 e6x + c

Just once we have completed the last integral in the problem we will add in the constant of integration to obtain our final answer.


Related Discussions:- Example of integration by parts - integration techniques

How do you find the second minimum spanning tree of a graph, How do you fin...

How do you find the second minimum spanning tree of a graph?  Find the second minimum spanning tree of the following graph.  Ans: The second minimum spanning tree is acq

Plane figures, what are the formulas for finding the area and volume of pla...

what are the formulas for finding the area and volume of plane figures

Linear programming, function [x, z] = readSolution(tableau, basis)

function [x, z] = readSolution(tableau, basis)

Exact differential equations, The subsequent type of first order differenti...

The subsequent type of first order differential equations which we'll be searching is correct differential equations. Before we find in the full details behind solving precise diff

Optimization, Optimization : In this section we will learn optimization p...

Optimization : In this section we will learn optimization problems.  In optimization problems we will see for the largest value or the smallest value which a function can take.

find the slope and the y intercept of the line - geometry, 1. Find the slo...

1. Find the slope and the y-intercept of the line whose equation is 5x + 6y = 7. 2. Find the equation of the line that is parallel to 2x + 5y = 7 and passes through the mid poin

Volumes of solids of revolution -method of cylinders, Volumes of Solids of ...

Volumes of Solids of Revolution / Method of Cylinders In the previous section we started looking at determine volumes of solids of revolution.  In this section we took cross se

What was his weight within pounds and ounces, Justin weighed 8 lb 12 oz whi...

Justin weighed 8 lb 12 oz while he was born. At his two-week check-up, he had gained 8 ounces. What was his weight within pounds and ounces? There are 16 ounces within a pound.

Green function, greens function for x''''=0, x(1)=0, x''(0)+x''(1)=0 is G(t...

greens function for x''''=0, x(1)=0, x''(0)+x''(1)=0 is G(t,s)= {1-s for t or equal to s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd