Example of integration by parts - integration techniques, Mathematics

Assignment Help:

Example of Integration by Parts - Integration techniques

Illustration1:  Evaluate the following integral.

∫ xe6x dx

Solution :

Thus, on some level, the difficulty here is the x that is in front of the exponential.  If that was not there we could do the integral.  Notice also, that in doing integration by parts anything that we wish for u will be differentiated.  Thus, it seems that choosing u = x will be a good choice as upon differentiating the x will drop out.

Here that we've selected u we know that dv will be everything else which remains.  Thus, here are the choices for u and dv also du and v.

u = x    dv = e6x dx

du = dx           v = e6x dx = 1/6e6x

Then the integral is as follow:

∫ xe6x dx = x/6 e6x - ∫ 1/6 e6x dx

= x/6 e6x - 1/36 e6x + c

Just once we have completed the last integral in the problem we will add in the constant of integration to obtain our final answer.


Related Discussions:- Example of integration by parts - integration techniques

Harold used a 3% iodine solution and a 20% iodine solution, Harold used a 3...

Harold used a 3% iodine solution and a 20% iodine solution to make a 95- ounce solution in which was 19% iodine. How many ounces of the 3% iodine solution did he use? Let x = t

Mensuration, A palm tree of heights 25m is broken by storm in such a way th...

A palm tree of heights 25m is broken by storm in such a way that its top touches the ground at a distance of 5m from its root,but is not separated from the tree.Find the height at

Example of integrals involving quadratics, Evaluate the following integral....

Evaluate the following integral. ∫√(x 2 +4x+5) dx Solution: Remind from the Trig Substitution section that to do a trig substitution here we first required to complete t

Negative function , Negative function : Several functions are not positive...

Negative function : Several functions are not positive however.  Consider the case of f (x ) =x 2 - 4 on [0,2].  If we utilizes n = 8 and the midpoints for the rectangle height w

Probability, Mike sells on the average 15 newspapers per week (Monday – Fri...

Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers

Transportation problem, 12. List the merits and limitations of using North ...

12. List the merits and limitations of using North West corner rule.

Intercepts, The last topic that we want to discuss in this section is that ...

The last topic that we want to discuss in this section is that of intercepts.  Notice that the graph in the above instance crosses the x-axis in two places & the y-axis in one plac

Differential equations, There isn't actually a whole lot to this section th...

There isn't actually a whole lot to this section this is mainly here thus we can get several basic concepts and definitions out of the way.  Most of the concepts and definitions in

The shortest distance between the line y-x=1 and curve x=y^2, Any point on ...

Any point on parabola, (k 2 ,k) Perpendicular distance formula: D=(k-k 2 -1)/2 1/2 Differentiating and putting =0 1-2k=0 k=1/2 Therefore the point is (1/4, 1/2) D=3/(32 1/2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd