Example of integration by parts - integration techniques, Mathematics

Assignment Help:

Example of Integration by Parts - Integration techniques

Illustration1:  Evaluate the following integral.

∫ xe6x dx

Solution :

Thus, on some level, the difficulty here is the x that is in front of the exponential.  If that was not there we could do the integral.  Notice also, that in doing integration by parts anything that we wish for u will be differentiated.  Thus, it seems that choosing u = x will be a good choice as upon differentiating the x will drop out.

Here that we've selected u we know that dv will be everything else which remains.  Thus, here are the choices for u and dv also du and v.

u = x    dv = e6x dx

du = dx           v = e6x dx = 1/6e6x

Then the integral is as follow:

∫ xe6x dx = x/6 e6x - ∫ 1/6 e6x dx

= x/6 e6x - 1/36 e6x + c

Just once we have completed the last integral in the problem we will add in the constant of integration to obtain our final answer.


Related Discussions:- Example of integration by parts - integration techniques

Fraction word problem, castor brought 6 3/4 carat cakes to share with 26 st...

castor brought 6 3/4 carat cakes to share with 26 students. did castor bring enough for each student to have 1/4 of cake?

Mathematical formulae, Mathematical Formulae (a ...

Mathematical Formulae (a + b) 2 = a 2 + b 2 + 2ab (a - b) 2 = a 2 + b 2 - 2ab (a + b) 2 +

Changing the base of the index, Changing The Base Of The Index For com...

Changing The Base Of The Index For comparison reasons if two series have different base years, this is difficult to compare them directly. In such cases, it is essential to ch

Least cost method in operations research, algorithm and numerical examples ...

algorithm and numerical examples of least cost method

Calculus, I need help with my calculus

I need help with my calculus

Determine and classify all critical points , Determine and classify all the...

Determine and classify all the critical points of the given function.  Described the intervals where function is increasing & decreasing. Solution: Firstly we'll require

prove area of rhombus on hypotenuse right-angled triangle, Prove that the ...

Prove that the area of a rhombus on the hypotenuse of a right-angled triangle, with one of the angles as 60o, is equal to the sum of the areas of rhombuses with one of their angles

Evaluate following unit circle, Evaluate following sin 2 ?/3   and sin (-2 ...

Evaluate following sin 2 ?/3   and sin (-2 ?/3) Solution: The first evaluation in this part uses the angle 2 ?/3.  It is not on our unit circle above, though notice that  2 ?/

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd