Example of integrals involving quadratics, Mathematics

Assignment Help:

Evaluate the following integral.

∫√(x2+4x+5) dx

Solution:

Remind from the Trig Substitution section that to do a trig substitution here we first required to complete the square on the quadratic. This provides,

X2+4x+5 = x2+4x+4-4+5=(x+2)2+1

After completing the square the integral becomes like this:

∫√(x2 + 4x +5) dx

= ∫ √ ((x+2)2 1dx)

Upon doing this we can recognize the trig substitution that we require.  Here it is,

x + 2 = tan θ

x= tan θ -2

dx = sec2 θdθ

√((x + 2)2 +1)

= √ tan2 θ+1

=√ sec2 θ

=|sec θ |

= sec θ

Recall that as we are doing an indefinite integral we be able to drop the absolute value bars.  By using this substitution the integral becomes,

20_Example of Integrals Involving Quadratics 2.png

∫ √x2 + 4x + 5 dx = ∫ sec3 θ d θ

= ½ (secθ tanθ + ln |secθ + tan θ|) + c

We can end the integral out along with the following right triangle.

tanθ = (x+2/1)

secθ = √(x2 + 4x +5/1)

        = √ (x2+4x+5)

1954_Example of Integrals Involving Quadratics 1.png

∫ √(x2+4x+5) dx = ½ ((x+2)√x2+4x+5+1n|x+2+√x2+4x+5|) + c

Thus, by completing the square we were capable to take an integral that had a general quadratic in it and transform it into a form that permitted us to make use of a known integration technique.


Related Discussions:- Example of integrals involving quadratics

Hypothesis testing, Hypothesis Testing Definition of Hypothesis Testing...

Hypothesis Testing Definition of Hypothesis Testing - A hypothesis is a claim or an opinion about an issue or item.  Hence it has to be tested statistically in order to esta

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part I ...

Fundamental Theorem of Calculus, Part I As noted through the title above it is only the first part to the Fundamental Theorem of Calculus. The first part of this theorem us

#title., Julia must do a 70:30 split of all of her profits with the Departm...

Julia must do a 70:30 split of all of her profits with the Department of Athletics. Julia also has the ability to sell soft drinks. If she decide to sell soft drinks, she must agre

Find the sum of all natural no. between 101 and 304, Find the sum of all na...

Find the sum of all natural no. between 101 & 304 which are divisible by 3 or 5. Find their sum. Ans:    No let 101 and 304, which are divisible by 3. 102, 105..........

How many ways are there to seat these children, Question: (a) Suppose ...

Question: (a) Suppose that a cookie shop has four different kinds of cookies. Assuming that only the type of cookie, and not the individual cookies or the order in which they

How to convert decimals to fractions, Q. How to Convert decimals to fractio...

Q. How to Convert decimals to fractions? Ans. Note: This tutorial covers only terminating decimals.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd