Example of integrals involving quadratics, Mathematics

Assignment Help:

Evaluate the following integral.

∫√(x2+4x+5) dx

Solution:

Remind from the Trig Substitution section that to do a trig substitution here we first required to complete the square on the quadratic. This provides,

X2+4x+5 = x2+4x+4-4+5=(x+2)2+1

After completing the square the integral becomes like this:

∫√(x2 + 4x +5) dx

= ∫ √ ((x+2)2 1dx)

Upon doing this we can recognize the trig substitution that we require.  Here it is,

x + 2 = tan θ

x= tan θ -2

dx = sec2 θdθ

√((x + 2)2 +1)

= √ tan2 θ+1

=√ sec2 θ

=|sec θ |

= sec θ

Recall that as we are doing an indefinite integral we be able to drop the absolute value bars.  By using this substitution the integral becomes,

20_Example of Integrals Involving Quadratics 2.png

∫ √x2 + 4x + 5 dx = ∫ sec3 θ d θ

= ½ (secθ tanθ + ln |secθ + tan θ|) + c

We can end the integral out along with the following right triangle.

tanθ = (x+2/1)

secθ = √(x2 + 4x +5/1)

        = √ (x2+4x+5)

1954_Example of Integrals Involving Quadratics 1.png

∫ √(x2+4x+5) dx = ½ ((x+2)√x2+4x+5+1n|x+2+√x2+4x+5|) + c

Thus, by completing the square we were capable to take an integral that had a general quadratic in it and transform it into a form that permitted us to make use of a known integration technique.


Related Discussions:- Example of integrals involving quadratics

Differentiation formulas, Differentiation Formulas : We will begin this s...

Differentiation Formulas : We will begin this section with some basic properties and formulas.  We will give the properties & formulas in this section in both "prime" notation &

Examples on log rules, Examples on Log rules: Example:      Calculate...

Examples on Log rules: Example:      Calculate (1/3)log 10   2. Solution: log b n√A = log b A 1/n = (1/n)log b A (1/3)log 10 2 = log 10 3 √2 = log 10 1.

3-d geometry, Q) In 3D-geometry give + and - signs for x,y,z, in all eight ...

Q) In 3D-geometry give + and - signs for x,y,z, in all eight octants Ans) There is no specific hard rule for numbering the octants. So, it makes no real sense to ask which octan

Power of x, (x+1/x)^2=3 then value of x^72+x^66+x^54+x^36+x^24+x^6+1 is

(x+1/x)^2=3 then value of x^72+x^66+x^54+x^36+x^24+x^6+1 is

Harmonic mean-arthmetic geometric progression, Harmonic mean It is a m...

Harmonic mean It is a measure of central tendency which is utilized to determine the average increase rates for natural economies. This is defined like the reciprocal of the a

Illustration of simpson rule, By using n = 4 and all three rules to approxi...

By using n = 4 and all three rules to approximate the value of the following integral. Solution Very firstly, for reference purposes, Maple provides the following valu

Sketch the graph of h (t ) = 1 - 5e 1/(t/2), Sketch the graph of h (t ) = ...

Sketch the graph of h (t ) = 1 - 5e  1/(t/2) Solution : Let's primary get a table of values for this function. Following is the sketch. The major point behin

What is the length of the longer base, The longer base of a trapezoid is th...

The longer base of a trapezoid is three times the shorter base. The nonparallel sides are congruent. The nonparallel side is 5 cm more that the shorter base. The perimeter of the t

Expertes, how to do multiplication

how to do multiplication

Surface area with polar coordinates, Surface Area with Polar Coordinates ...

Surface Area with Polar Coordinates We will be searching for at surface area in polar coordinates in this part.  Note though that all we're going to do is illustrate the formu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd