Example of integrals involving quadratics, Mathematics

Assignment Help:

Evaluate the following integral.

∫√(x2+4x+5) dx

Solution:

Remind from the Trig Substitution section that to do a trig substitution here we first required to complete the square on the quadratic. This provides,

X2+4x+5 = x2+4x+4-4+5=(x+2)2+1

After completing the square the integral becomes like this:

∫√(x2 + 4x +5) dx

= ∫ √ ((x+2)2 1dx)

Upon doing this we can recognize the trig substitution that we require.  Here it is,

x + 2 = tan θ

x= tan θ -2

dx = sec2 θdθ

√((x + 2)2 +1)

= √ tan2 θ+1

=√ sec2 θ

=|sec θ |

= sec θ

Recall that as we are doing an indefinite integral we be able to drop the absolute value bars.  By using this substitution the integral becomes,

20_Example of Integrals Involving Quadratics 2.png

∫ √x2 + 4x + 5 dx = ∫ sec3 θ d θ

= ½ (secθ tanθ + ln |secθ + tan θ|) + c

We can end the integral out along with the following right triangle.

tanθ = (x+2/1)

secθ = √(x2 + 4x +5/1)

        = √ (x2+4x+5)

1954_Example of Integrals Involving Quadratics 1.png

∫ √(x2+4x+5) dx = ½ ((x+2)√x2+4x+5+1n|x+2+√x2+4x+5|) + c

Thus, by completing the square we were capable to take an integral that had a general quadratic in it and transform it into a form that permitted us to make use of a known integration technique.


Related Discussions:- Example of integrals involving quadratics

What are the three sides of a right triangle, What are the Three Sides of a...

What are the Three Sides of a Right Triangle? Each side of a right triangle can be labeled opposite, adjacent, or hypotenuse, based on its relationship to the right angle and o

Find the tangent to the curve, 1. Find the third and fourth derivatives of ...

1. Find the third and fourth derivatives of the function Y=5x 7 +3x-6-17x -3 2. Find the Tangent to the curve Y= 5x 3 +2x-1 At the point where x = 2.

Triangles, about scalene,equilateral and isosceles.

about scalene,equilateral and isosceles.

Reduction of order, We're here going to take a brief detour and notice solu...

We're here going to take a brief detour and notice solutions to non-constant coefficient, second order differential equations of the form. p (t) y′′ + q (t ) y′ + r (t ) y = 0

Speed and distance, Two trains were traveling in opposite directions, movin...

Two trains were traveling in opposite directions, moving away from one another. One train was moving at 5 miles per hour. The other train was moving at 6 miles per hour. They were

Vector, uses of vector in daly life

uses of vector in daly life

Calculate the net amount and distance, 1. A train on the Bay Area Rapid Tra...

1. A train on the Bay Area Rapid Transit system has the ability to accelerate to 80 miles/hour in half a minute. A.   Express the acceleration in miles per hour per minute. B

1trig, how do you find the tan, sin, and cos.

how do you find the tan, sin, and cos.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd