Example of integrals involving quadratics, Mathematics

Assignment Help:

Evaluate the following integral.

∫√(x2+4x+5) dx

Solution:

Remind from the Trig Substitution section that to do a trig substitution here we first required to complete the square on the quadratic. This provides,

X2+4x+5 = x2+4x+4-4+5=(x+2)2+1

After completing the square the integral becomes like this:

∫√(x2 + 4x +5) dx

= ∫ √ ((x+2)2 1dx)

Upon doing this we can recognize the trig substitution that we require.  Here it is,

x + 2 = tan θ

x= tan θ -2

dx = sec2 θdθ

√((x + 2)2 +1)

= √ tan2 θ+1

=√ sec2 θ

=|sec θ |

= sec θ

Recall that as we are doing an indefinite integral we be able to drop the absolute value bars.  By using this substitution the integral becomes,

20_Example of Integrals Involving Quadratics 2.png

∫ √x2 + 4x + 5 dx = ∫ sec3 θ d θ

= ½ (secθ tanθ + ln |secθ + tan θ|) + c

We can end the integral out along with the following right triangle.

tanθ = (x+2/1)

secθ = √(x2 + 4x +5/1)

        = √ (x2+4x+5)

1954_Example of Integrals Involving Quadratics 1.png

∫ √(x2+4x+5) dx = ½ ((x+2)√x2+4x+5+1n|x+2+√x2+4x+5|) + c

Thus, by completing the square we were capable to take an integral that had a general quadratic in it and transform it into a form that permitted us to make use of a known integration technique.


Related Discussions:- Example of integrals involving quadratics

Trigonometry, trigonometric ratios of sum and difference of two angles

trigonometric ratios of sum and difference of two angles

Express the gcd as a linear combination, Express the GCD of 48 and 18 as a ...

Express the GCD of 48 and 18 as a linear combination.              (Ans: Not unique) A=bq+r, where  o ≤  r 48=18x2+12 18=12x1+6 12=6x2+0 ∴ HCF (18,48) = 6 now  6

The mean value theorem with proof, The Mean Value Theorem  Assume f(x)...

The Mean Value Theorem  Assume f(x) is a function that satisfies both of the subsequent. 1.   f(x) is continuous on the closed interval [a,b]. 2.   f(x) is differentiabl

Detemine the amplitude of trigonometric function, 1. Consider the trigonome...

1. Consider the trigonometric function f(t) = (a) What is the amplitude of f(t)? (b) What is the period of f(t)? (c) What are the maximum and minimum values attained by

Harold used a 3% iodine solution and a 20% iodine solution, Harold used a 3...

Harold used a 3% iodine solution and a 20% iodine solution to make a 95- ounce solution in which was 19% iodine. How many ounces of the 3% iodine solution did he use? Let x = t

An amortization, Ahmad borrowed $450000.00 at 3% compounded semi-annually f...

Ahmad borrowed $450000.00 at 3% compounded semi-annually for ten years to buy an apartment. Equal payments are made at the end of every six months. a) Determine the size of the se

Calculate one-sided limits, Calculate the value of the following limits. ...

Calculate the value of the following limits. Solution From the graph of this function illustrated below, We can illustrate that both of the one-sided limits suffer

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd