Example of inflection point - set theory and calculus, Mathematics

Assignment Help:

Need help, Determine the points of inflection on the curve of the function

y = x3

 


Related Discussions:- Example of inflection point - set theory and calculus

What is limit x tends to 0 log(1+x)/x to the base a?, Here we will use the...

Here we will use the expansion method Firstly lim x-0 log a (1+x)/x firstly using log property we get: lim x-0 log a (1+x)-logx then we change the base of log i.e lim x-0 {l

Wavy curve method, In order to compute the inequalities of the form ...

In order to compute the inequalities of the form   where n 1 , n 2 , ....... , n k , m 1 , m 2 , ....... , m p are natural and real numbers and a 1 , a 2 , ... , a k ,

Conditional probability: dependent events, We can define the conditional pr...

We can define the conditional probability of event A, given that event B occurred when both A and B are dependent events, as the ratio of the number of elements common in both A an

Given a differential equation will a solution exist?, All differential equa...

All differential equations will doesn't have solutions thus it's useful to identify ahead of time if there is a solution or not. Why waste our time trying to get something that doe

Mass marketing, is mass marketing completely dead?

is mass marketing completely dead?

Find the equation for each of the two planes , Find the equation for each o...

Find the equation for each of the two planes that just touch the sphere (x - 1) 2 + (y - 4) 2 + (z - 2)2 = 36 and are parallel to the yz-plane. And give the points on the sphere

Math, A screening test for a newly discovered disease is being evaluated. I...

A screening test for a newly discovered disease is being evaluated. In order to determine the effectiveness of the new test, it was administered to 900 workers; 150 of the individu

Area related to circles, railway tunnel of radius 3.5 m and angle aob =90 f...

railway tunnel of radius 3.5 m and angle aob =90 find height of the tunnel

Aliena

2/13/2013 12:24:41 AM

hey try this...

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd