Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78


Related Discussions:- Example of inflection point-differential equation

Evaluate relate rate in shape of a cone a tank , In the shape of a cone a t...

In the shape of a cone a tank of water is leaking water at a constant rate of 2 ft 3 /hour .  The base radius of the tank is equal to 5 ft and the height of the tank is 14 ft.

Fractions Word Problem, 1/8 of the passengers of a train were children.If t...

1/8 of the passengers of a train were children.If there were 40 children travelling in the train on a certain day,how many adults were there in that train that day?

Solve the form x2 - bx - c in factoring polynomials, Solve The form x 2 -...

Solve The form x 2 - bx - c in  Factoring Polynomials ? This tutorial will help you factor quadratics that look something like this: x 2 - 11x - 12 (No lead coefficient

Estimate the area of this field in terms of x and y, Jonestown High School...

Jonestown High School has a soccer field whose dimensions can be expressed as 7y 2 and 3xy. What is the area of this field in terms of x and y? Since the area of the soccer ?e

Solution of rectilinear figures, A tower and a monument stand on a level pl...

A tower and a monument stand on a level plane. the angles of depression on top and bottom of the monument viewed from the top of the tower are 13 degrees and 31 degrees, respective

Functions, the function g is defined as g:x 7-4x find the number k such tha...

the function g is defined as g:x 7-4x find the number k such that kf(-8)=f- 3/2

Decimals, 2.46825141458*1456814314.446825558556

2.46825141458*1456814314.446825558556

Geometry, prove angle MJL is congruent to angle KNL

prove angle MJL is congruent to angle KNL

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd