Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78


Related Discussions:- Example of inflection point-differential equation

Calculus (The squeeze theorem), When finding the limit as x approaches 0 th...

When finding the limit as x approaches 0 the for function (square root of x^3 + x^2) cos(pi/2x) would the limit not exist because there would be a zero in the denominator?

Find the perimeter and the area of the shaded portion, The given figure con...

The given figure consists of four small semicircles and two big semicircles.  If the smaller semicircles are equal in radii and the bigger semicircles are also equal in radii, find

Shares and dividend, a man in rested rupee 800 is buying rupee 5 shares and...

a man in rested rupee 800 is buying rupee 5 shares and then are selling at premium of rupee 1.15. He sells all the shares.find profit

BOUNDARY VALUE PROBLEM, Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0...

Ut=Uxx+A exp(-bx) u(x,0)=A/b^2(1-exp(-bx)) u(0,t)=0 u(1,t)=-A/b^2 exp(-b)

Intrgers, how to evaluate the sums

how to evaluate the sums

Functions of several variables - three dimensional space, Functions of Seve...

Functions of Several Variables - Three Dimensional Space In this part we want to go over a few of the basic ideas about functions of much more than one variable. Very first

Find out ratio, the sides of a right angle triangle are a,a+d,a+2d with a a...

the sides of a right angle triangle are a,a+d,a+2d with a and d both positive.the ratio of a to d  a)1:2 b)1:3 c)3:1 d)5:2 answer is (c) i.e. 3:1 Solution: Applying

Mathematic Modeling, Ask question I have 2 problems I need them after 7 hou...

Ask question I have 2 problems I need them after 7 hours

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd