Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78


Related Discussions:- Example of inflection point-differential equation

Geometry, triangular with base AB = 48cm and height CH=16cm is inscribed a ...

triangular with base AB = 48cm and height CH=16cm is inscribed a rectangle MNPQ in which MN: MQ = 9:5 Find MN and MQ

Pricing, what is skimming pricing?

what is skimming pricing?

Prove that x2 + y2 - 8x - 10y +39 = 0, If the points (5, 4) and (x, y) are ...

If the points (5, 4) and (x, y) are equidistant from the point (4, 5), prove that x 2 + y 2 - 8x - 10y +39 = 0. Ans :   AP = PB AP 2 = PB 2 (5 - 4) 2 + (4 - 5) 2 = (x

Find out a vector that is orthogonal to the plane, A plane is illustrated b...

A plane is illustrated by any three points that are in the plane.  If a plane consists of the points P = (1, 0,0) , Q = (1,1,1) and R = (2, -1, 3) find out a vector that is orthogo

Least common denominator using primes, Least Common Denominator Using Prime...

Least Common Denominator Using Primes: A prime number is a whole number (integer) whose only factors are itself and one. So the first prime numbers are given as follows: 1,

Introduction to knowing your maths learner, INTRODUCTION : The other day I...

INTRODUCTION : The other day I overheard 6-year-old Ahmed explaining to his older sister about why swallowing the seeds of an orange is harmful. He said, "The seed will become a p

Numercial analysis and computer techniques, write FORTRAN programme to gene...

write FORTRAN programme to generate prime numbers between 1 and 100

Determine the volume of the pool, An inground pool is pooring with water. T...

An inground pool is pooring with water. The shallow end is 3 ft deep and gradually slopes to the deepest end, which is 10 ft deep. The width of the pool is 30 ft and the length is

Explain measurement conversions in details, Explain Measurement Conversions...

Explain Measurement Conversions in details? The following tables show measurements of length, distance, and weight converted from one system to the other. Length and Distanc

Substitute 6 for r in the formula a = r^2 and solve for a, Find the area of...

Find the area of a circle along with a radius of 6 inches. The formula for the area of a circle is A = πr 2 . Use 3.14 for π. Substitute  6 for r in the formula A = πr 2 and solve

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd