Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78


Related Discussions:- Example of inflection point-differential equation

Tchebyshev distance, Tchebyshev Distance (Maximum Travel Distance per Trip ...

Tchebyshev Distance (Maximum Travel Distance per Trip Using Rectilinear Distance): It can be calculated by using following formula: d(X, Pi) = max{|x - ai|, |y - bi|} (Source

Math134, how to sketch feasible set

how to sketch feasible set

Triple integral transformed, An elliptical galaxy has gravitational boundar...

An elliptical galaxy has gravitational boundaries defiend by 9x 2 +16y 2 +144z 2 =144. A black hole at the center of the galaxy is interacting with dark matter producing a radiatio

Help, question..A Circular rug is 6 yards in diameter. Binding for the edge...

question..A Circular rug is 6 yards in diameter. Binding for the edge of the rug cost $2.00 per yard . what eill it cost to bind the rug

Describe order of operations with example, Describe Order of Operations wit...

Describe Order of Operations with example? The order of operations is a set of rules that describe the order in which math operations are done. Try doing this math problem:

3-d coordinate system - three dimensional spaces, The 3-D Coordinate System...

The 3-D Coordinate System We will start the chapter off with a quite brief discussion introducing the 3-D coordinate system and the conventions that we will be utilizing.  We

Daily Math, Six times as many people voted in the 2012 election as in the 2...

Six times as many people voted in the 2012 election as in the 2008 election.If 162 people voted in 2008,how many people voted in both elections?

What is venn diagram, The diagrams drawn to given sets are called as Venn d...

The diagrams drawn to given sets are called as Venn diagrams or Eule -Venn diagrams. Here given the universal set U by points within rectangle and the subset A of the set U given b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd