Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78


Related Discussions:- Example of inflection point-differential equation

Calculate the width of the river, A surveyor is hired to calculate the widt...

A surveyor is hired to calculate the width of a river. Using the example provided, Calculate the width of the river. a. 48 ft b. 8 ft c. 35 ft d. 75 ft

Fractions, question paper on fractions

question paper on fractions

Statistics, what is meant by "measure of location"

what is meant by "measure of location"

Explain the graph of an equation and graph of an inequality, Explain The Gr...

Explain The Graph of an Equation and The Graph of an Inequality ? Here is the graph of the equation y = x. Notice that for every point along the line shown in the graph, the y

Applications of rational numbers, Kaylee makes 56 packages in seven hours T...

Kaylee makes 56 packages in seven hours Taylor makes 20% more packages in nine hours who makes more packages per hour

1234 Mathematics, use only the digits 1,2,3 and 4 in any order to write an ...

use only the digits 1,2,3 and 4 in any order to write an expression for the numbers 1 to 100. you may only use each digit once. You may use exponents of 1,2,3 and 4 in some of th

Explain the common forms of linear equations, Explain the Common Forms of L...

Explain the Common Forms of Linear Equations ? An equation whose graph is a line is called a linear equation. Here are listed some special forms of linear equations. Why should

Solve the differential equation, Solve the subsequent differential equation...

Solve the subsequent differential equation and find out the interval of validity for the solution. Let's start things off along with a fairly simple illustration so we can notic

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd