Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78


Related Discussions:- Example of inflection point-differential equation

Prove the arithmetic progressions equation, Prove that a m + n + a m - n ...

Prove that a m + n + a m - n  =2a m Ans:    a m + n = a 1 + (m + n - 1) d a m-n = a 1 + (m - n -1) d a m = a 1 + (m-1) d Add 1 & 2 a m+n + a m-n  =

Ratios, a muffin recipe calls for three forth of a cup of sugar and one eig...

a muffin recipe calls for three forth of a cup of sugar and one eight of a cup of butter. travis accidentally put in one whole cup of butter. how much sugar does travis need to put

How high is a structure, One method of calculating the height of an object ...

One method of calculating the height of an object is to place a mirror on the ground and then position yourself so that the top of the object will be seen in the mirror. How high i

Calculus, sin(xy)+x=5y Find the derivative.

sin(xy)+x=5y Find the derivative.

Determinant of an n×n matrix, How can we calculate the Determinant of an N×...

How can we calculate the Determinant of an N×N Matrix?

Show that a slope will vary along a curve, Can you show that a slope will v...

Can you show that a slope will vary along a curve (as opposed to a straight line)?

Practice, #question.Mai is 3 years ypunger than twice the age of her brothe...

#question.Mai is 3 years ypunger than twice the age of her brother .If b represents .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd