Example of inflection point-differential equation, Mathematics

Assignment Help:

Example of inflection point

Determine the points of inflection on the curve of the function

y = x3

Solution

The only possible inflexion points will happen where

(d2y)/( dx2)   = 0

From specified function as:

(dy)/(dx) = 3x2 and (d2y)/( dx2)   = 6x

Equating the second derivative to zero, we include

 6x = 0 or x = 0

We test whether the point at that x = 0 is an inflexion point as follows

While x is slightly less than 0, ((d2y)/(dx2)) < 0; it means a downward concavity

While x is slightly larger than 0, ((d2y)/(dx2)) > 0;  it means an upward concavity

Hence we have a point of inflexion at point x = 0 since the concavity of the curve changes as we pass from the left to the right of x = 0

Illustration:-

                                 924_Example of inflection point.png

 

maximize and the revenue

1. The per week revenue Sh. R of a small company is specified by

 R = (14 + 81x - (x3/12)) whereas x is the number of units produced.

Required

i.          Find out the number of units that maximize the revenue

ii.         Find out the maximum revenue

iii.        Find out the price per unit that will maximize revenue

Solution

i. To determine maximum or minimum value we needs differential calculus as given below:

R = (14 + 81x - (x3/12))

(dR)/(dx) = 81 - (1/12) . (3x2)

(d2R)/(dx2) = 0 - (1/12) . (3.2x) = -(x/2)

Put (dR)/(dx) = 0 that is 81 - (1/4)x2 = 0

That gives x = 18 or x = -18

(d2R)/(dx2) = -(x/2)

Hence when x = 18;

(d2R)/(dx2) = -9

That is (-) negative indicating a maximum value.

Hence at x = 18, the value of R is a maximum. Correspondingly at x = -18, the value of R is a minimum. Thus, the number of units that maximize the revenue = 18 units

i. The maximum revenue is given as

            R = 14 + 81 + 18 - ((18)3)/12

                        = Shs. 986

ii.The price per unit to maximize the revenue is given as:

986/18 = 54.78 or Shs.54.78


Related Discussions:- Example of inflection point-differential equation

In the terms of x, The length of Kara's rectangular patio can be expressed ...

The length of Kara's rectangular patio can be expressed as 2x - 1 and the width can be expressed as x + 6. In the terms of x, what is the area of her patio? Since the area of a

Differentiate quotient rule functions, Example of quotient rule : Let's no...

Example of quotient rule : Let's now see example on quotient rule.  In this, unlike the product rule examples, some of these functions will require the quotient rule to get the de

Vector, with t =[a b c] construct a matrix A = 1 1 1 ...

with t =[a b c] construct a matrix A = 1 1 1 a b c a^2 b^2 c^2 a^3 b^3 c^3 using vector operations

Student, What is the slope and y intercept for (6,5) (-3,8)

What is the slope and y intercept for (6,5) (-3,8)

Topology, Is usual topology on R is comparable to lower limit topology on R...

Is usual topology on R is comparable to lower limit topology on R

Take home test, what is 36 percent as a fraction in simplest form

what is 36 percent as a fraction in simplest form

Negative signs in fractions, Q. Negative Signs in Fractions? It reall...

Q. Negative Signs in Fractions? It really doesn't matter where you put a negative sign in a fraction.  The following are all the same: The negative sign can go in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd