Example of infinite interval - improper integrals, Mathematics

Assignment Help:

Evaluate the subsequent integral.

1088_Example of Infinite Interval - Improper Integrals 1.png

Solution

This is an innocent enough looking integral. Though, because infinity is not a real number we cannot just integrate as normal and after that "plug in" the infinity to get the answer, to see how we are going to do this type of integral let's think of this like an area problem. Thus in place of asking what the integral is, let's in place of ask what the area within f (x) = 1/x2 on the interval [1, ∞] is. Till we are not able to do this, though, let's step back a little and instead ask what the area within f (x) is on the interval [1, t] where 1 > t and t is finite. This is a difficulty that we can do.

21_Example of Infinite Interval - Improper Integrals 2.png

Now, we can get the area under f(x) on [1, ∞] simply by taking the limit of at like t goes to infinity.

1513_Example of Infinite Interval - Improper Integrals 3.png

After that this is how we will do the integral itself.

1276_Example of Infinite Interval - Improper Integrals 4.png


Related Discussions:- Example of infinite interval - improper integrals

Utilizes second derivative test to classify critical point, Utilizes the se...

Utilizes the second derivative test to classify the critical points of the function,                                               h ( x ) = 3x 5 - 5x 3 + 3 Solution T

Factoring quadratic polynomials, Primary, note that quadratic is another te...

Primary, note that quadratic is another term for second degree polynomial. Thus we know that the largest exponent into a quadratic polynomial will be a2. In these problems we will

Decimal representations of some basic angles, Decimal representations of so...

Decimal representations of some basic angles: As a last quick topic let's note that it will, on occasion, be useful to remember the decimal representations of some basic angles. S

Sequence, how to find the indicated term?

how to find the indicated term?

Circles - common polar coordinate graphs, Circles - Common Polar Coordinate...

Circles - Common Polar Coordinate Graphs Let us come across at the equations of circles in polar coordinates. 1. r = a . This equation is saying that there is no matter

Expressing the interest rate as a decimal fraction, Total Contribution per ...

Total Contribution per Year for next 10yeras =$1000+$800 =$1800 So Total Future fund Vaule  =$1800*(1+1.073+power(1.073,2)+ power(1.073,2)+ power(1.073,3)+ power(1.073,4)+ power

Simultaneous equations by substitution, Simultaneous equations by substitut...

Simultaneous equations by substitution: Solve the subsequent simultaneous equations by substitution. 3x + 4y = 6      5x + 3y = -1 Solution: Solve for x: 3x = 6

Time & distance., Q4. Assume that the distance that a car runs on one liter...

Q4. Assume that the distance that a car runs on one liter of petrol varies inversely as the square of the speed at which it is driven. It gives a run of 25km per liter at a speed o

Matrices, Give me the assignment on the matrices...

Give me the assignment on the matrices...

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd