Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Evaluate the subsequent integral.
Solution
This is an innocent enough looking integral. Though, because infinity is not a real number we cannot just integrate as normal and after that "plug in" the infinity to get the answer, to see how we are going to do this type of integral let's think of this like an area problem. Thus in place of asking what the integral is, let's in place of ask what the area within f (x) = 1/x2 on the interval [1, ∞] is. Till we are not able to do this, though, let's step back a little and instead ask what the area within f (x) is on the interval [1, t] where 1 > t and t is finite. This is a difficulty that we can do.
Now, we can get the area under f(x) on [1, ∞] simply by taking the limit of at like t goes to infinity.
After that this is how we will do the integral itself.
Construct the finite automaton for the state transition table given below. Ans: The finite automata is displayed below. The initial state is marked along with arrow sign a
Explain Measurement Conversions in details? The following tables show measurements of length, distance, and weight converted from one system to the other. Length and Distanc
Tori was asked to provide an example of the commutative property of addition. Which of the subsequent choices would be correct? Using the simple interest formula Interest = pr
a
Definition 1. Given any x 1 & x 2 from an interval I with x 1 2 if f ( x 1 ) 2 ) then f ( x ) is increasing on I. 2. Given any x 1 & x 2 from an interval
Illustration : Solve the following IVP. Solution: First get the eigenvalues for the system. = l 2 - 10 l+ 25 = (l- 5) 2 l 1,2 = 5 Therefore, we got a
how can i build Y=2x
#question application of vector and scalar in our daily life
how to make an obtuse scalene triangle FAT with m
MAXIMAX method Maximax method is based upon 'extreme optimism' the decision maker chooses that particular strategy which corresponds to the maximum of the maximum pay off for e
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd