Example of implicit differentiation, Mathematics

Assignment Help:

Example of Implicit differentiation

So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid implicit differentiation by solving for y.

Example   Determine y′ for the following function.

                                                   x2 + y 2  = 9

Solution

Now, it is just a circle and we can solve out for y which would give,

1797_implicite derivation.png

Prior to starting this problem we stated that we must do implicit differentiation here since we couldn't just solve out for y and still that's what we just did.  Thus, why can't we utilize "normal" differentiation here? The problem is the " ±".  With this in the "solution" for y we illustrates that y is actually two different functions. Which should we use?  Should we utilize both? We just want a single function for the derivative and at best we contain two functions here.

Thus, in this example really we are going to have to do implicit differentiation thus we can ignore this. In this instance we'll do the similar thing we did in the first example & remind ourselves that y is actually a function of x and write y as y (x) .  Once we've done it all we have to do is differentiate each term w.r.t x.

                                           dx2 [y ( x )]2  / dx = d (9)/dx

As with the first example the right side is simple.  The left side is also pretty simple as all we have to do is take the derivative of each of term and note  as well that the second term will be same the part (a) of the second example.  All we have to do for the second term is utilizes the chain rule.

After taking the derivative we contain,

                           2 x + 2 [y ( x ) ]1y′ ( x ) = 0

 At this instance we can drop the ( x ) part since it was only in the problem to help with the differentiation procedure. The last step is to just solve the resulting equation for y′ .

2x + 2 yy′ = 0

y′ = - x /y

We can't just plug in for y as we wouldn't know which of the two functions to utilization.  Most answers from implicit differentiation will include both x & y so don't get excited regarding that when it happens.


Related Discussions:- Example of implicit differentiation

Concept, uses of maths concept

uses of maths concept

#permutation, #The digits 1,2,3,4and 5 are arranged in random order,to form...

#The digits 1,2,3,4and 5 are arranged in random order,to form a five-digit number. Find the probability that the number is a. an odd number. b.less than 23,000

Find the depth of water in the pond, A lotus is 2m above the water in a pon...

A lotus is 2m above the water in a pond. Due to wind the lotus slides on the side and only the stem completely submerges in the water at a distance of 10m from the original positio

Focal chord of the parabola, show that the circle described on any focal c...

show that the circle described on any focal chord of the parabola touches the directrix

Bottleneck for each product, A company makes 2 products, Product A and Prod...

A company makes 2 products, Product A and Product B. The product characteristics are shown in the following table. Product A B

Subtraction involving negative numbers, Q. Subtraction Involving Negative N...

Q. Subtraction Involving Negative Numbers? In order to subtract positive and negative numbers, you need to be aware of the Rule for Subtraction. This rule states that subtracti

How many solutions are there for differential equation, If a differential e...

If a differential equation does have a solution how many solutions are there? As we will see ultimately, this is possible for a differential equation to contain more than one s

Fractions, how do you divide fractions?

how do you divide fractions?

Explain comparing fractions with example, Explain Comparing Fractions with ...

Explain Comparing Fractions with example? If fractions are not equivalent, how do you figure out which one is larger? Comparing fractions involves finding the least common

Continuous random variable, Continuous Random Variable In the probabili...

Continuous Random Variable In the probability distribution the sum of all the probabilities was 1. Consider the variable X denoting "Volume poured into a 100cc cup from coff

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd