Example of implicit differentiation, Mathematics

Assignment Help:

Example of Implicit differentiation

So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid implicit differentiation by solving for y.

Example   Determine y′ for the following function.

                                                   x2 + y 2  = 9

Solution

Now, it is just a circle and we can solve out for y which would give,

1797_implicite derivation.png

Prior to starting this problem we stated that we must do implicit differentiation here since we couldn't just solve out for y and still that's what we just did.  Thus, why can't we utilize "normal" differentiation here? The problem is the " ±".  With this in the "solution" for y we illustrates that y is actually two different functions. Which should we use?  Should we utilize both? We just want a single function for the derivative and at best we contain two functions here.

Thus, in this example really we are going to have to do implicit differentiation thus we can ignore this. In this instance we'll do the similar thing we did in the first example & remind ourselves that y is actually a function of x and write y as y (x) .  Once we've done it all we have to do is differentiate each term w.r.t x.

                                           dx2 [y ( x )]2  / dx = d (9)/dx

As with the first example the right side is simple.  The left side is also pretty simple as all we have to do is take the derivative of each of term and note  as well that the second term will be same the part (a) of the second example.  All we have to do for the second term is utilizes the chain rule.

After taking the derivative we contain,

                           2 x + 2 [y ( x ) ]1y′ ( x ) = 0

 At this instance we can drop the ( x ) part since it was only in the problem to help with the differentiation procedure. The last step is to just solve the resulting equation for y′ .

2x + 2 yy′ = 0

y′ = - x /y

We can't just plug in for y as we wouldn't know which of the two functions to utilization.  Most answers from implicit differentiation will include both x & y so don't get excited regarding that when it happens.


Related Discussions:- Example of implicit differentiation

Regression model, Consider the regression model  Y i = a + bX i + u i ,  ...

Consider the regression model  Y i = a + bX i + u i ,  where the  X i   are non-stochastic and the  u i   are independently and identically distributed with  E[u i ] = 0  and  va

One tailed test, One Tailed Test It is a test where the alternative hy...

One Tailed Test It is a test where the alternative hypothesis (H 1 :) is only concerned along with one of the tails of the distribution for illustration, to test a business co

Linear relations, a drawn picture on a graph that includes equations of eac...

a drawn picture on a graph that includes equations of each line

find the slope and the y intercept of the line - geometry, 1. Find the slo...

1. Find the slope and the y-intercept of the line whose equation is 5x + 6y = 7. 2. Find the equation of the line that is parallel to 2x + 5y = 7 and passes through the mid poin

Skewness-measure of central tendency, Skewness - It is a concept which...

Skewness - It is a concept which is normally used in statistical decision making. This refers to the degree whether a described frequency curve is deviating away from the gene

Quadrilateral, similarities between rectangle & parallelogram

similarities between rectangle & parallelogram

Linear programming, Consider the following linear programming problem: M...

Consider the following linear programming problem: Min (12x 1 +18x 2 )             X 1 + 2x 2 ≤ 40             X 1 ≤ 50             X 1 + X 2 = 40             X

Addition and subtraction of rational expressions, Now come to addition and ...

Now come to addition and subtraction of rational expressions.  Following are the general formulas.  (a/c) + (b/c) = (a + b)/c

Example of linear equations, Example of Linear Equations: Solve the eq...

Example of Linear Equations: Solve the equation 2x + 9 = 3(x + 4). Solution: Step 1. Using Axiom 2, subtract 3x and 9 from both sides of the equation. 2x + 9 = 3(

Vectors and sclara, find the angel between the vectors 4i-2j+k and 2i-4j on...

find the angel between the vectors 4i-2j+k and 2i-4j online answer

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd