Example of implicit differentiation, Mathematics

Assignment Help:

Example of Implicit differentiation

So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid implicit differentiation by solving for y.

Example   Determine y′ for the following function.

                                                   x2 + y 2  = 9

Solution

Now, it is just a circle and we can solve out for y which would give,

1797_implicite derivation.png

Prior to starting this problem we stated that we must do implicit differentiation here since we couldn't just solve out for y and still that's what we just did.  Thus, why can't we utilize "normal" differentiation here? The problem is the " ±".  With this in the "solution" for y we illustrates that y is actually two different functions. Which should we use?  Should we utilize both? We just want a single function for the derivative and at best we contain two functions here.

Thus, in this example really we are going to have to do implicit differentiation thus we can ignore this. In this instance we'll do the similar thing we did in the first example & remind ourselves that y is actually a function of x and write y as y (x) .  Once we've done it all we have to do is differentiate each term w.r.t x.

                                           dx2 [y ( x )]2  / dx = d (9)/dx

As with the first example the right side is simple.  The left side is also pretty simple as all we have to do is take the derivative of each of term and note  as well that the second term will be same the part (a) of the second example.  All we have to do for the second term is utilizes the chain rule.

After taking the derivative we contain,

                           2 x + 2 [y ( x ) ]1y′ ( x ) = 0

 At this instance we can drop the ( x ) part since it was only in the problem to help with the differentiation procedure. The last step is to just solve the resulting equation for y′ .

2x + 2 yy′ = 0

y′ = - x /y

We can't just plug in for y as we wouldn't know which of the two functions to utilization.  Most answers from implicit differentiation will include both x & y so don't get excited regarding that when it happens.


Related Discussions:- Example of implicit differentiation

Continuity requirement, Continuity requirement : Let's discuss the continu...

Continuity requirement : Let's discuss the continuity requirement a little. Nowhere in the above description did the continuity requirement clearly come into play.  We need that t

Calculate the average, During 2008 the average number of beds required per ...

During 2008 the average number of beds required per day at St Hallam's hospital was 1800.  During the first 50 days of 2008 the average daily requirement for beds was 1830, with a

Integral test- harmonic series, Integral Test- Harmonic Series In ha...

Integral Test- Harmonic Series In harmonic series discussion we said that the harmonic series was a divergent series.  It is now time to demonstrate that statement.  This pr

Find out the interval of validity, Without solving, find out the interval o...

Without solving, find out the interval of validity for the subsequent initial value problem. (t 2 - 9) y' + 2y = In |20 - 4t|,   y(4) = -3 Solution First, in order to u

Standardization of variables, Standardization of Variables - Before we...

Standardization of Variables - Before we use the general distribution curve to determine probabilities of the continuous variables, we require standardizing the original units

Complex roots - second order differential equations, We will be looking at ...

We will be looking at solutions to the differential equation, in this section ay′′ + by′ + cy = 0 Wherein roots of the characteristic equation, ar 2 + br + c = 0 Those

Geometry, in right angle triangle BAC.

in right angle triangle BAC.

Mealy and Moore Machine, Distinguish between Mealy and Moore Machine? Const...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''s encountered is even or odd.on..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd