Example of implicit differentiation, Mathematics

Assignment Help:

Example of Implicit differentiation

So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid implicit differentiation by solving for y.

Example   Determine y′ for the following function.

                                                   x2 + y 2  = 9

Solution

Now, it is just a circle and we can solve out for y which would give,

1797_implicite derivation.png

Prior to starting this problem we stated that we must do implicit differentiation here since we couldn't just solve out for y and still that's what we just did.  Thus, why can't we utilize "normal" differentiation here? The problem is the " ±".  With this in the "solution" for y we illustrates that y is actually two different functions. Which should we use?  Should we utilize both? We just want a single function for the derivative and at best we contain two functions here.

Thus, in this example really we are going to have to do implicit differentiation thus we can ignore this. In this instance we'll do the similar thing we did in the first example & remind ourselves that y is actually a function of x and write y as y (x) .  Once we've done it all we have to do is differentiate each term w.r.t x.

                                           dx2 [y ( x )]2  / dx = d (9)/dx

As with the first example the right side is simple.  The left side is also pretty simple as all we have to do is take the derivative of each of term and note  as well that the second term will be same the part (a) of the second example.  All we have to do for the second term is utilizes the chain rule.

After taking the derivative we contain,

                           2 x + 2 [y ( x ) ]1y′ ( x ) = 0

 At this instance we can drop the ( x ) part since it was only in the problem to help with the differentiation procedure. The last step is to just solve the resulting equation for y′ .

2x + 2 yy′ = 0

y′ = - x /y

We can't just plug in for y as we wouldn't know which of the two functions to utilization.  Most answers from implicit differentiation will include both x & y so don't get excited regarding that when it happens.


Related Discussions:- Example of implicit differentiation

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

Population problem - nonhomogeneous systems, The next kind of problem seems...

The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single po

Jason 10 two-point or 2 three-point how many points score, Jason made 10 tw...

Jason made 10 two-point baskets and 2 three-point baskets within Friday's basketball game. He did not score any other points. How many points did he score? Find out the number

Linear approximation method for interpolation, Linear Approxi...

Linear Approximation Method This is a rough and ready method of interpolation and is best used when the series moves in predicted interval

How many gumdrops, Will has a bag of gumdrops. If he eats 2 of his gumdrops...

Will has a bag of gumdrops. If he eats 2 of his gumdrops, he will have among 2 and 6 of them left. Which of the subsequent represents how many gumdrops, x, were originally in his b

Graphs, How do I graph a round robin pool tournment with 6 players using gr...

How do I graph a round robin pool tournment with 6 players using graph theory

0^0, what is the value of zero to the power raised to zero?

what is the value of zero to the power raised to zero?

Quantitative, The Laser Computer Printer Company decides monthly what to pr...

The Laser Computer Printer Company decides monthly what to produce during the subsequent month. They produce three types of printers, the Laser Rocket, the Alpha Laser, and the La

Average function value of even and odd function, Average Function Value ...

Average Function Value The first application of integrals which we'll see is the average value of a function. The given fact tells us how to calculate this. Average Functi

Find the shortest weighted paths, 1. Answer the questions about the graph b...

1. Answer the questions about the graph below. a. Name one cycle that begins and ends at B. b. True/False - the graph is strongly connected.  If not, explain why not.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd