Example of implicit differentiation, Mathematics

Assignment Help:

Example of Implicit differentiation

So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid implicit differentiation by solving for y.

Example   Determine y′ for the following function.

                                                   x2 + y 2  = 9

Solution

Now, it is just a circle and we can solve out for y which would give,

1797_implicite derivation.png

Prior to starting this problem we stated that we must do implicit differentiation here since we couldn't just solve out for y and still that's what we just did.  Thus, why can't we utilize "normal" differentiation here? The problem is the " ±".  With this in the "solution" for y we illustrates that y is actually two different functions. Which should we use?  Should we utilize both? We just want a single function for the derivative and at best we contain two functions here.

Thus, in this example really we are going to have to do implicit differentiation thus we can ignore this. In this instance we'll do the similar thing we did in the first example & remind ourselves that y is actually a function of x and write y as y (x) .  Once we've done it all we have to do is differentiate each term w.r.t x.

                                           dx2 [y ( x )]2  / dx = d (9)/dx

As with the first example the right side is simple.  The left side is also pretty simple as all we have to do is take the derivative of each of term and note  as well that the second term will be same the part (a) of the second example.  All we have to do for the second term is utilizes the chain rule.

After taking the derivative we contain,

                           2 x + 2 [y ( x ) ]1y′ ( x ) = 0

 At this instance we can drop the ( x ) part since it was only in the problem to help with the differentiation procedure. The last step is to just solve the resulting equation for y′ .

2x + 2 yy′ = 0

y′ = - x /y

We can't just plug in for y as we wouldn't know which of the two functions to utilization.  Most answers from implicit differentiation will include both x & y so don't get excited regarding that when it happens.


Related Discussions:- Example of implicit differentiation

Integration, what is integration and how is it important

what is integration and how is it important

Impact did this have on spanish approach their subjugation, Compare and con...

Compare and contrast the Conquest of Mexico and the Conquest of Peru in the 16 th century. How did the structures of the indigenous empires in these two regions differ? What impact

Determine a particular solution to differential equation, Determine a parti...

Determine a particular solution for the subsequent differential equation. y′′ - 4 y′ -12 y = 3e5t + sin(2t) + te4t Solution This example is the purpose that we've been u

Algebra ii, How do you graph a hyperbola?

How do you graph a hyperbola?

Pie chart, i have this data 48 degree, 72 degree, 43.2degree, 24degree , 40...

i have this data 48 degree, 72 degree, 43.2degree, 24degree , 40.8degree on this make a pie chart

Explain the dependent events, Explain the Dependent Events? Events are ...

Explain the Dependent Events? Events are called dependent events when the outcome of one event influences the outcome of the second event. P(A and B) = P(A) P(B following A

Define combined functions, Q. Define Combined Functions? Ans. We a...

Q. Define Combined Functions? Ans. We are often interested in functions which combine a trigonometric function with another type of function.  For example, y = x + sinx wi

Math World Problem, The ratio of gasoline to oil needed to run a chain-saw ...

The ratio of gasoline to oil needed to run a chain-saw is 16:1. If you have 3.5 mL of oil, how many millilitres of gasoline must you add to get the proper mixture?

How do you find the second minimum spanning tree of a graph, How do you fin...

How do you find the second minimum spanning tree of a graph?  Find the second minimum spanning tree of the following graph.  Ans: The second minimum spanning tree is acq

What is unreducing fractions, Q, Did you know that you can unreduce a fract...

Q, Did you know that you can unreduce a fraction? Ans. Remember, you reduce a fraction by dividing the numerator and denominator by the same numbers. Here we divide

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd