Example of implicit differentiation, Mathematics

Assignment Help:

Example of Implicit differentiation

So, now it's time to do our first problem where implicit differentiation is required, unlike the first example where we could actually avoid implicit differentiation by solving for y.

Example   Determine y′ for the following function.

                                                   x2 + y 2  = 9

Solution

Now, it is just a circle and we can solve out for y which would give,

1797_implicite derivation.png

Prior to starting this problem we stated that we must do implicit differentiation here since we couldn't just solve out for y and still that's what we just did.  Thus, why can't we utilize "normal" differentiation here? The problem is the " ±".  With this in the "solution" for y we illustrates that y is actually two different functions. Which should we use?  Should we utilize both? We just want a single function for the derivative and at best we contain two functions here.

Thus, in this example really we are going to have to do implicit differentiation thus we can ignore this. In this instance we'll do the similar thing we did in the first example & remind ourselves that y is actually a function of x and write y as y (x) .  Once we've done it all we have to do is differentiate each term w.r.t x.

                                           dx2 [y ( x )]2  / dx = d (9)/dx

As with the first example the right side is simple.  The left side is also pretty simple as all we have to do is take the derivative of each of term and note  as well that the second term will be same the part (a) of the second example.  All we have to do for the second term is utilizes the chain rule.

After taking the derivative we contain,

                           2 x + 2 [y ( x ) ]1y′ ( x ) = 0

 At this instance we can drop the ( x ) part since it was only in the problem to help with the differentiation procedure. The last step is to just solve the resulting equation for y′ .

2x + 2 yy′ = 0

y′ = - x /y

We can't just plug in for y as we wouldn't know which of the two functions to utilization.  Most answers from implicit differentiation will include both x & y so don't get excited regarding that when it happens.


Related Discussions:- Example of implicit differentiation

Geometry, I need help in my homework

I need help in my homework

Evaluate following. 0ln (1+)excos(1-ex)dx substitution, Evaluate following....

Evaluate following. ∫ 0 ln (1 + π )   e x cos(1-e x )dx Solution The limits are little unusual in this case, however that will happen sometimes therefore don't get

Sums and differences of cubes and other odd powers, Sums and Differences of...

Sums and Differences of Cubes (and other odd powers)? You can factor a sum or difference of cubes using the formulas a 3 - b 3 = (a - b )(a 2 + ab + b 2 ) and a 3 + b 3 =

Equivalence relation, a) Let V = f1, 2, :::, 7g and define R on V by xRy if...

a) Let V = f1, 2, :::, 7g and define R on V by xRy iff x -  y is a multiple of 3. You should know by now that R is an equivalence relation on V . Suppose that this is so. Explain t

What is the probability of choosing a red ball, Q. What is the probability ...

Q. What is the probability of choosing a red ball? Ans. A box contains a red, blue and white ball. Two are drawn with replacement. (This means that one ball is selected, i

What is inductive reasoning, What is Inductive Reasoning ? Sometimes we...

What is Inductive Reasoning ? Sometimes we draw conclusions based on our observations. If we observe the same results again and again, we conclude that the event always has the

Calculus!, x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by...

x+2y^2=63 and 4x+y^2=0; Find the area of the regions enclosed by the lines and curves.

Characteristic, mention the characteristic of mathematic

mention the characteristic of mathematic

Utilizes second derivative test to classify critical point, Utilizes the se...

Utilizes the second derivative test to classify the critical points of the function,                                               h ( x ) = 3x 5 - 5x 3 + 3 Solution T

Distribution of sample means not normal, The distribution of sample means i...

The distribution of sample means is not always a normal distribution. Under what circumstances is the distribution of sample means not normal?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd