Example of graphing equations, Mathematics

Assignment Help:

Example of Graphing Equations:

Example:

By using the above figure, find out the distance traveled if the average speed is 20 mph and the time traveled is 40 minutes.

The line labeled A in Figure connects 20 mph and 40 minutes.  It passes through 14.5 miles.

Therefore, the distance traveled is 14.5 miles.

Example:

By using the above figure, find out the time required to travel 31 miles at an average speed of 25 mph.

The line labeled B in Figure connects 31 miles and 25 mph. It passes through 70 minutes.

Therefore, the time required is 70 minutes.


Related Discussions:- Example of graphing equations

A jeweler has bars of 18-carat gold , A jeweler has bars of 18-carat gold a...

A jeweler has bars of 18-carat gold and 12-carat gold. How much of every melted together to obtain a bar of 16-carat gold, weighing 120 gm ? It is given that pure gold is 24 carat.

Pie chart, i have this data 48 degree, 72 degree, 43.2degree, 24degree , 40...

i have this data 48 degree, 72 degree, 43.2degree, 24degree , 40.8degree on this make a pie chart

Decimals, 0.875 of a number is 2282. What is the number ?

0.875 of a number is 2282. What is the number ?

Example of hcf, Example  Find the Highest Common Factor of 54, 72...

Example  Find the Highest Common Factor of 54, 72 and 150. First we consider 54 and 72. The HCF for these two quantities is calculated as follows:

Determine the equation of the line, Example :  Determine the equation of th...

Example :  Determine the equation of the line which passes through the point (8, 2) and is, parallel to the line given by 10 y+ 3x = -2 Solution In both of parts we are goi

Finance, Determine the value of a $1800 investment after six years at 9.3% ...

Determine the value of a $1800 investment after six years at 9.3% per year, simple interest

Calculus, What is the slope of the line tangent to f(x)=3-2 ln(2x^2+4) at t...

What is the slope of the line tangent to f(x)=3-2 ln(2x^2+4) at the point (4, f(4))

Determine y' for xy = 1 by implicit differentiation, Determine y′ for xy = ...

Determine y′ for xy = 1 . Solution : There are in fact two solution methods for this problem. Solution 1: It is the simple way of doing the problem.  Just solve for y to

Show that the angles subtended at the centre , A circle touches the sides o...

A circle touches the sides of a quadrilateral ABCD at P, Q, R and S respectively. Show that the angles subtended at the centre by a pair of opposite sides are supplementary.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd