Example of exponential growth, Algebra

Assignment Help:

Example The growth of a colony of bacteria is provided by the equation,

                                           Q = Q e0.195 t

If there are at first 500 bacteria exist and t is given in hours find out each of the following.

(a) How several bacteria are there after a half of a day?  

(b) How much time will it take before there are 10000 bacteria in the colony?  

Solution

Following is the equation for this starting amount of bacteria.

                                               Q =500 e0.195 t

(a) How several bacteria are there after a half of a day?

In this case if we desire the number of bacteria after half of a day we will have to use t = 12 as t is in hours.  Thus, to obtain the answer to this part we only need to plug t into the equation.

                         Q = 500 e0.195(12)  = 500 (10.3812365627 ) =5190.618

Thus, as a fractional population doesn't make any sense we'll say that after half of day there are 5190 of the bacteria present.

 (b) How much time will it take before there are 10000 bacteria in the colony?

Do not make the mistake of supposing that it will be approximately 1 day for this answer depends on the answer to the previous part. Along exponential growth things just don't work that way as we'll illustrate.  To answer this part we will have to solve the following exponential equation.

                                                          10000 = 500 e0.195 t

Let's do that.

 10000/500  =e 0.195 t

20 = e0.195 t

ln 20 = ln e0.195 t

 

ln 20 = 0.195t  ⇒ t = ln 20 / 0.195 =15.3627

Thus, it only takes approximately 15.4 hours to attain 10000 bacteria and not 24 hours if we only double the time from the first part. In other terms, be careful!


Related Discussions:- Example of exponential growth

Linear inequalities, To this instance in this chapter we've concentrated on...

To this instance in this chapter we've concentrated on solving out equations.  Now it is time to switch gears a little & begin thinking regarding solving inequalities.  Before we g

Example of inverse functions, Here are two one-to-one functions f (x ) and ...

Here are two one-to-one functions f (x ) and g ( x ) if     (f o g )( x ) = x           AND                         ( g o f ) ( x ) = x then we say that f ( x )& g ( x ) are

Vectors, Any vector space V satisÖes the ten axioms, among which the last o...

Any vector space V satisÖes the ten axioms, among which the last one is: "for any vector * u 2 V; 1 * u = * u; where 1 is the multiplicative identity of real numbers R:" Discuss th

Equation, How to find the term in algebraic equation like 9x=18 only harder...

How to find the term in algebraic equation like 9x=18 only harder

Augmented matrices, In this section we have to take a look at the third met...

In this section we have to take a look at the third method for solving out systems of equations.  For systems of two equations it is possibly a little more complex than the methods

Real numbers, solve the equation 2x^3+x^2-8x+3=0 in the real number system

solve the equation 2x^3+x^2-8x+3=0 in the real number system

Negative Integer Exponents, In 1975, the U.S. Environmental protection agen...

In 1975, the U.S. Environmental protection agency set a standard of 50 parts per billion of lead in drinking water. In 1991, a new standard was set that safe water contains less th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd