Example of equations with radicals, Algebra

Assignment Help:

Solve x =√(x+ 6) .

Solution

In this equation the fundamental problem is the square root.  If it weren't there we could do the problem.  The whole procedure that we're going to go through here is set up to remove the square root. Though, as we will see, the steps which we're going to take can in fact cause problems for us.  Thus, let's see how this all works.

Let's notice that if we just square both of sides we can make the square root go away.  Let's do that & see what happens.

( x)2  = ( √(x + 6) )2

x2  = x +6

x2 - x - 6 =0

( x - 3) ( x + 2) =0       ⇒x = 3,      x = -2

Upon squaring both of sides we see that we get a factorable quadratic equation which gives us two solutions x = 3 and x = -2 .

Now, for no clear reason, let's do something which actually we haven't done since the section on solving linear equations. Let's check our answers. Recall as well that we have to check the answers in the original equation! That is very significant.

Let's first check    x = 3

1915_Example of Equations with Radicals.png

      3 = √9        OK

Thus x = 3 is a solution.  Now let's check x = -2 .

                                                      971_Example of Equations with Radicals1.png   NOT OK

We have a problem.  Remember that square roots are always +ve and thus x = -2 does not work in original equation.  Here one possibility is that we commit a mistake somewhere. We can go back & look though and we'll rapidly see that we haven't made a mistake.

Thus, what is the deal?  Recall that our first step in the solution procedure was to square both sides.  Notice that if we plug x = -2 into the quadratic we solved out it would actually be a solution to that.  While we squared both sides of the equation actually we changed the equation and in the procedure introduced a solution that is not a solution to the original equation.

With these problems this is critically important that you check your solutions as it will often happen. While this does we only take the values which are actual solutions to the original equation.

Thus, the original equation had a single solution x = 3.


Related Discussions:- Example of equations with radicals

Process for graphing a polynomial, 1. Find out all the zeroes of the polyno...

1. Find out all the zeroes of the polynomial and their multiplicity.  Utilizes the fact above to find out the x-intercept which corresponds to each zero will cross the x-axis or on

FACTORING WITH TRAIL AND ERROR, you can use the equation -b +or- Square ro...

you can use the equation -b +or- Square root of bsquared - 4(a)(c)over 2a. But if you number for b is b is negative it will become positive??? And if the number was + it will Beco

Weq, wqdweq wqre

wqdweq wqre

Kenneth, brody rode his bike 70 miles in 4 hours. he rode at an average spe...

brody rode his bike 70 miles in 4 hours. he rode at an average speed of 17 mph for t hours and at an average rate of speed of 22 mph for the rest of the time. how long did brody ri

Writing linear equations, If you sell a kayak for $400 and your sales per d...

If you sell a kayak for $400 and your sales per day averages $5200. Assume the sales per day is a linear function of price of kayak. write an equation describing the relationship.

.., 2 bicyclist riding on a circular track start at the same time. one can ...

2 bicyclist riding on a circular track start at the same time. one can make it around the track in 8 min. the other takes 10 min. how long will it take the faster bicyclist to catc

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd