Example of equations with radicals, Algebra

Assignment Help:

Solve x =√(x+ 6) .

Solution

In this equation the fundamental problem is the square root.  If it weren't there we could do the problem.  The whole procedure that we're going to go through here is set up to remove the square root. Though, as we will see, the steps which we're going to take can in fact cause problems for us.  Thus, let's see how this all works.

Let's notice that if we just square both of sides we can make the square root go away.  Let's do that & see what happens.

( x)2  = ( √(x + 6) )2

x2  = x +6

x2 - x - 6 =0

( x - 3) ( x + 2) =0       ⇒x = 3,      x = -2

Upon squaring both of sides we see that we get a factorable quadratic equation which gives us two solutions x = 3 and x = -2 .

Now, for no clear reason, let's do something which actually we haven't done since the section on solving linear equations. Let's check our answers. Recall as well that we have to check the answers in the original equation! That is very significant.

Let's first check    x = 3

1915_Example of Equations with Radicals.png

      3 = √9        OK

Thus x = 3 is a solution.  Now let's check x = -2 .

                                                      971_Example of Equations with Radicals1.png   NOT OK

We have a problem.  Remember that square roots are always +ve and thus x = -2 does not work in original equation.  Here one possibility is that we commit a mistake somewhere. We can go back & look though and we'll rapidly see that we haven't made a mistake.

Thus, what is the deal?  Recall that our first step in the solution procedure was to square both sides.  Notice that if we plug x = -2 into the quadratic we solved out it would actually be a solution to that.  While we squared both sides of the equation actually we changed the equation and in the procedure introduced a solution that is not a solution to the original equation.

With these problems this is critically important that you check your solutions as it will often happen. While this does we only take the values which are actual solutions to the original equation.

Thus, the original equation had a single solution x = 3.


Related Discussions:- Example of equations with radicals

Example of double inequalities, Now, let's solve out some double inequaliti...

Now, let's solve out some double inequalities. The procedure here is alike in some ways to solving single inequalities and still very different in other ways. As there are two ineq

Turning points - polynomials, The "humps" where the graph varies direction ...

The "humps" where the graph varies direction from increasing to decreasing or decreasing to increasing is frequently called turning points .  If we know that the polynomial con

Find the volume, a box whose volumeis 80cubic cm has length,width,height in...

a box whose volumeis 80cubic cm has length,width,height in the ratio 1:2:5 if each of the length,width,height is increased by 2cm how many cubic centimeters will the volume be incr

Varibles, 2x-1=10 I got 9/2 but i''m not sure if that is really right

2x-1=10 I got 9/2 but i''m not sure if that is really right

Quadratic equations, In the earlier section we looked at using factoring & ...

In the earlier section we looked at using factoring & the square root property to solve out quadratic equations. The problem is that both of these methods will not always work. Not

Linear equations , solve the system of equations by graphically and compare...

solve the system of equations by graphically and compare the solution with that obtained by matrix approach 3x+2y=8 y=x-1

Basic fact, What is a Math Basic Fact?

What is a Math Basic Fact?

ALG, if a-2b=5 then a3-8b3-30ab

if a-2b=5 then a3-8b3-30ab

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd