Example of developing an understanding, Mathematics

Assignment Help:

I gave my niece a whole heap of beads and showed her how to divide it up into sets of 10 beads each. Then I showed her how she could lay out each set of I0 beads in a line, and call it a string. After she had made some strings, I told her that with 10 strings she could make a necklace.

She started making strings and necklaces with the beads, and slowly tried to form a relationship between a necklace and a string in her mind. After a bit, I asked her how many strings she would exchange for a necklace. She thought for a moment and said, "10." =then I asked her how many necklaces she could make from 107 beads. She thought for a while, and then said, "10 strings, and 7 beads will be left." I asked, "How many necklaces does that make?" To help her answer this, I asked her to actually take 107 beads and try and make as many necklaces as possible, given the fact that a necklace meant 10 strings and each string meant 10 beads.

She took the beads and ended up getting one necklace and 7 beads.

Next, I asked her how she would write that. The two of us worked out a system in which we wrote N S B -the number of necklaces was to be written below N, the number of strings below S and the number of beads below B. Under N she wrote 1 and under B she wrote 7. I asked her, "What about the number of strings?", to which she said, "There are no strings." So I asked her how she shadow that. She thought for a moment, and then wrote 0 below S.

(Note : Children may tend to ignore writing 0 in a numeral, because they think that it denotes 'nothing', and hence it need not be written. )

Then 1 wrote H T 0 above N S B, and asked her if she agreed with that. She thought for a bit, and then said that she did because 1'00 beads were one necklace and 10 beads was one string. "Fine ! Now, howmuch is 325?" I asked her. She property replied "3 necklaces, 2 strings, 5 beads." "How many beads does that make?" "Three hundred and twenty-five," she said.

After some type of such questions we played the following game. I gave her 3 digits. She was supposed to use them to make as many numerals as she could, and arrange them in decreasing order. Once 1 felt that my niece was enjoying the game, I extended it to 4 digits. And she made all possible numerals with them, including those like 0129 with 0, 1,2 and 9. 1 felt that it was very important to have her practise these ideas for a reasonable time and in a leisurely manner, without pressure.


Related Discussions:- Example of developing an understanding

Decision theory, DECISION THEORY People constantly make decision...

DECISION THEORY People constantly make decisions in their private lives as well as in their work. Some decisions are qualitative in terms of their implications and signi

The perimeter square can be expressed as x + 4 estimate x, The perimeter of...

The perimeter of a square can be expressed as x + 4. If one side of the square is 24, what is the value of x? Since the perimeter of the square is x + 4, and a square has four

Chi-square hypothesis tests as non-parametric test(x2), Chi-square hypothes...

Chi-square hypothesis tests as Non-parametric test(X2) They contain amongst others i.    Test for goodness of fit ii.   Test for independence of attributes iii.  Test

Product moment coefficient, Product Moment Coefficient This gives an i...

Product Moment Coefficient This gives an indication of the strength of the linear relationship among two variables. Note that this formula can be rearranged to have di

Decision-making under conditions of certainty, Decision-Making Under Condit...

Decision-Making Under Conditions of Certainty Conditions of certainty tend to be rare, especially when significant decisions are involved. Under conditions of certainty, decis

Algebra, 2x+2y=10 and 3y+4x=9

2x+2y=10 and 3y+4x=9

Develop a linear algebraic equation, Introduction: "Mathematical liter...

Introduction: "Mathematical literacy is an individual's capacity to identify and understand the role that mathematics plays in the world, to make well-founded judgments, and t

Describe common phrases to represent math operations, Describe Common Phras...

Describe Common Phrases to Represent Math Operations? The table below shows the common phrases used in word problems to represent addition, subtraction, multiplication, and div

Polar to cartesian conversion formulas, Polar to Cartesian Conversion Formu...

Polar to Cartesian Conversion Formulas x = r cos Θ y = r sin Θ Converting from Cartesian is more or less easy.  Let's first notice the subsequent. x 2 + y 2   = (r co

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd