Example of developing an understanding, Mathematics

Assignment Help:

I gave my niece a whole heap of beads and showed her how to divide it up into sets of 10 beads each. Then I showed her how she could lay out each set of I0 beads in a line, and call it a string. After she had made some strings, I told her that with 10 strings she could make a necklace.

She started making strings and necklaces with the beads, and slowly tried to form a relationship between a necklace and a string in her mind. After a bit, I asked her how many strings she would exchange for a necklace. She thought for a moment and said, "10." =then I asked her how many necklaces she could make from 107 beads. She thought for a while, and then said, "10 strings, and 7 beads will be left." I asked, "How many necklaces does that make?" To help her answer this, I asked her to actually take 107 beads and try and make as many necklaces as possible, given the fact that a necklace meant 10 strings and each string meant 10 beads.

She took the beads and ended up getting one necklace and 7 beads.

Next, I asked her how she would write that. The two of us worked out a system in which we wrote N S B -the number of necklaces was to be written below N, the number of strings below S and the number of beads below B. Under N she wrote 1 and under B she wrote 7. I asked her, "What about the number of strings?", to which she said, "There are no strings." So I asked her how she shadow that. She thought for a moment, and then wrote 0 below S.

(Note : Children may tend to ignore writing 0 in a numeral, because they think that it denotes 'nothing', and hence it need not be written. )

Then 1 wrote H T 0 above N S B, and asked her if she agreed with that. She thought for a bit, and then said that she did because 1'00 beads were one necklace and 10 beads was one string. "Fine ! Now, howmuch is 325?" I asked her. She property replied "3 necklaces, 2 strings, 5 beads." "How many beads does that make?" "Three hundred and twenty-five," she said.

After some type of such questions we played the following game. I gave her 3 digits. She was supposed to use them to make as many numerals as she could, and arrange them in decreasing order. Once 1 felt that my niece was enjoying the game, I extended it to 4 digits. And she made all possible numerals with them, including those like 0129 with 0, 1,2 and 9. 1 felt that it was very important to have her practise these ideas for a reasonable time and in a leisurely manner, without pressure.


Related Discussions:- Example of developing an understanding

Properties of relations in a set, Reflexive Relations: R is a reflexive...

Reflexive Relations: R is a reflexive relation if (a, a) € R,  a € A. It could be noticed if there is at least one member a € A like (a, a) € R, then R is not reflexive. Sy

Polynomials in two variables, Polynomials in two variables Let's take a...

Polynomials in two variables Let's take a look at polynomials in two variables.  Polynomials in two variables are algebraic expressions containing terms in the form ax n y m

Multiplication of complex numbers, Multiplication of complex numbers Af...

Multiplication of complex numbers After that, let's take a look at multiplication.  Again, along with one small difference, it's possibly easiest to just think of the complex n

How to solving one-step equations, How to Solving One-Step Equations? E...

How to Solving One-Step Equations? Equations, where one math operation is acting on the variable, can be solved in one step. The trick is to get the variable x by itself - isol

Differentiation formulas, Differentiation Formulas : We will begin this s...

Differentiation Formulas : We will begin this section with some basic properties and formulas.  We will give the properties & formulas in this section in both "prime" notation &

The coordinate axes, Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly sta...

Trace the curve y 2 = (x + 2) 2 (x - 6). Clearly state all the properties you have used for tracing it(e.g., symmetry about the axes, symmetry about the origin, points of interse

Example of least common denominator, Example of Least Common Denominator: ...

Example of Least Common Denominator: Example: Add 1/7 +2 /3 + 11/12 + 4/6 Solution: Step 1:             Find out primes of each denominator. 7 = 7 (already is

Permutation, Permutation - It is an order arrangement of items whether...

Permutation - It is an order arrangement of items whether the order must be strictly observed Illustration Assume x, y and z be any of three items. Arrange these in all

Give examples on multiplication rule in probability, Example: Suppose your...

Example: Suppose your football team has 10 returning athletes and 4 new members. How many ways can the coach choose one old player and one new one? Solution:  There are 10 wa

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd