Example of complex roots, Mathematics

Assignment Help:

Solve the subsequent IVP.

y'' - 4y' + 9y = 0, y(0) = 0, y'(0) = -8

Solution

The characteristic equation for such differential equation is. As:

 r2 - 4r + 9 = 0

 The roots of this equation are r1,2  = 2 + √(5i). So the general solution to the differential equation is as:

y(t) = c1 e2t cos (√5t)+ c2 e2t sin (√5t)

Here, you'll note that we didn't differentiate it right away as we did in the previous section. The motive for this is easy. But the differentiation is not terribly complicated this can find a little messy. Thus, first looking at the initial conditions we can notice from the first one which if we just applied it we would find the subsequent.

0 = y (0) + c1

Conversely, the first term will drop out so as to meet the first condition. It makes the solution, with its derivative as

y(t) = c2 e2t sin (√5t)

y'(t) = 2c2 e2t sin (√5t) +√5 c2 e2t cos (√5t)

A much fine derivative than if we'd complete the original solution. Here, apply the second initial condition to the derivative to find out,

-8 = y'(0) = √5 c2                   ⇒ c2 = -8/√5

The actual solution is here as:

y(t) =  -8/√5 e2t sin (√5t)


Related Discussions:- Example of complex roots

Math, what is division

what is division

Calcukus, A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an ...

A drug has a decay rate of k = - ¼ ln(¾) / hr. How soon after an initial dose of 1600 mg will the drug reach its minimum therapeutic value of 900 mg in the body?

Example on eulers method, For the initial value problem y' + 2y = 2 - e ...

For the initial value problem y' + 2y = 2 - e -4t , y(0) = 1 By using Euler's Method along with a step size of h = 0.1 to get approximate values of the solution at t = 0.1, 0

Lines- common polar coordinate graphs, Lines- Common Polar Coordinate Graph...

Lines- Common Polar Coordinate Graphs A few lines have quite simple equations in polar coordinates. 1.  θ = β We are able to see that this is a line by converting to Car

Distance traveled, a) Determine the distance traveled among t = 0 and  t =∏...

a) Determine the distance traveled among t = 0 and  t =∏/2 by a particle P(x, y) whose position at time t is given by Also check your result geometrically.  (5) b) D

Parallel and perpendicular lines, The last topic that we have to discuss in...

The last topic that we have to discuss in this section is that of parallel & perpendicular lines. Following is a sketch of parallel and perpendicular lines. Suppose that th

Example of multiplication of matrix, Given So calculate AB. Sol...

Given So calculate AB. Solution The new matrix will contain size 2 x 4. The entry in row 1 and column 1 of the new matrix will be determined by multiplying row 1 of

Find the volume of the cuboids, If the areas of three adjacent faces of cub...

If the areas of three adjacent faces of cuboid are x, y, z respectively, Find the volume of the cuboids. Ans: lb = x , bh = y, hl = z Volume of cuboid = lbh V 2 = l 2 b 2

Explain what is symmetry in maths, Symmetry Definition : A line of sy...

Symmetry Definition : A line of symmetry divides a set of points into two halves, each being a reflection of the other. Each image point is also a point of the set. Defin

Special forms of polynomial, Special Forms There are a number of nice s...

Special Forms There are a number of nice special forms of some polynomials which can make factoring easier for us on occasion. Following are the special forms. a 2 + 2ab +

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd