Example of bars of varying cross section, Civil Engineering

Assignment Help:

Example of Bars of Varying Cross Section:

In the numerical example under consideration

δ = 750 × 300/( π/4) × 200 2 × 60 +750 × 400/(π/4) × 1352 × 60 + 750 × 200/(π/4) × 60 2 × 60 + 750 × 500/(π/4) × 100 2 × 60

+ 750/ (π/4) × 60 (300/2002+400/1352 + 200/602 + 500/1002) = 2.14865 mm

In the bar, display in Figure 16, the axial pull is applied at the ends and therefore the axial force in all the members is similar. On the bar, display in Figure 17(a), the external forces is applied at intermediate sections also. In such cases, the axial force in every member should be evaluated first, before any deformation calculations. This could be accomplished through considering equilibrium of each of the sections whereas external loads are applied. Though no external load has been prescribed at the LHS end, the support reaction has to be computed and taken as the external load. Equilibrium analysis could be simply carried out by treating each segment as a free body as display in Figure (b).

For instance, consider the equilibrium of the segment 4 in Figure (b). At the RHS end of the member a point load of 60 kN is applied. Therefore, for the member to be in equilibrium a force of - 60 kN should be applied at the RHS end of the member. Thus, the member is subjected to a tensile force of 60 kN which is represented through the internal arrows within accordance along with the sign conventions you have already learnt. Member 3 is pulled within a tensile force of 60 kN exerted through member 4 and further the external force of 80 kN also pulls the member in the similar direction, resulting in the member carrying a total tensile force of 140 kN. Proceeding therefore, the axial forces in all the members could be computed. To simplify the graphical representation we might display the member forces along along with external forces as shown in Figure(c).

Now let us compute the total elongation of the bar, taking the elastic modulus, E, as 200 kN/mm2.

2324_Example of Bars of Varying Cross Section.png

Figure

δ = ∑ δi = ∑  Pi Li /Ai Ei

=(160 × 600/800 × 200)+ (100 × 800/200 × 200)+ (140 × 800/600 × 200)+(60 × 500/150 × 200)

= 0.6 + 2.0 + 0.9333 + 1.0

= 4.53333 mm.


Related Discussions:- Example of bars of varying cross section

Quick cement, what is quick cement? its manufacture and uses? in which buil...

what is quick cement? its manufacture and uses? in which building it is used?

Determine the northing and easting coordinates, The northing and easting co...

The northing and easting coordinates for point C is most nearly:    Solution: Section the triangle and calculate using Pythagorean Theorem and the Law of Sine's or us

Determine the term - lowering of stresses, Determine the term -  lowering ...

Determine the term -  lowering of stresses Due to creep of concrete, these compressive strains keep on increasing with time. it means that the length of the member keeps on red

Drawing, parabola by offset method

parabola by offset method

Elongation, Elongation of bar due to self weight

Elongation of bar due to self weight

Soil in road construction, Soil in Road Construction: Road Embankme...

Soil in Road Construction: Road Embankment and Sub-grade Soil is mainly used as the material for constructing a road embankment. The road embankment supports the road

Full bore flow in drainage design, Q. Full bore flow in drainage design? ...

Q. Full bore flow in drainage design? In the design of gravity drainage pipes, full bore flow capacity is usually adopted to check against design runoff. Though one should note

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd