Example of a function - inflection point, Mathematics

Assignment Help:

1. (a) Give an example of a function, f(x), that has an inflection point at (1, 4).

(b) Give an example of a function, g(x), that has a local maximum at ( -3, 3) and a local minimum at (3, -3).

(c) Plot f(x) and g(x) on the same graph being sure to label the inflection point(s) and local extrema.

 


Related Discussions:- Example of a function - inflection point

Show that the ratio of the volume of the sphere, A sphere and a cube have e...

A sphere and a cube have equal surface areas. Show that the ratio of the volume of the sphere to that of the cube is √6 : √π. Ans:    S.A. of sphere = S.A of cube    4π r 2

First order linear differential equation, Newton's Second Law of motion, wh...

Newton's Second Law of motion, which recall from the earlier section that can be written as: m(dv/dt) = F (t,v) Here F(t,v) is the sum of forces which act on the object and m

What is the length of one side of the square, The area of a square is 64 cm...

The area of a square is 64 cm 2 . What is the length of one side of the square? To find out the area of a square, you multiply the length of a side through itself, because all

Additionally functions in substitution rule, Substitution Rule Mostly ...

Substitution Rule Mostly integrals are fairly simple and most of the substitutions are quite simple. The problems arise in correctly getting the integral set up for the substi

Diameter of the circle , The length of the diameter of the circle which tou...

The length of the diameter of the circle which touches the X axis at the point (1,0) and passes through the point (2,3) is ? Solution)  If a circle touches the x-axis, its equatio

Calculate the probability, Calculate the Probability A bag contains 80...

Calculate the Probability A bag contains 80 balls of such 20 are red, 25 are blue and 35 are white.  A ball is picked at random what is the probability that the ball picked is

If a sequence is bounded and monotonic then it is convergent, Theorem ...

Theorem If {a n } is bounded and monotonic then { a n } is convergent.  Be cautious to not misuse this theorem.  It does not state that if a sequence is not bounded and/or

Find the maxima and minima - equal pi, 1) Find the maxima and minima of f(x...

1) Find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2) Compute the work done by the force ?eld F(x,y,z) = x^2I + y j +y k in moving

Interpretation of the second derivative, Interpretation of the second deriv...

Interpretation of the second derivative : Now that we've discover some higher order derivatives we have to probably talk regarding an interpretation of the second derivative. I

Graphical understanding of derivatives, Graphical Understanding of Derivati...

Graphical Understanding of Derivatives: A ladder 26 feet long is leaning against a wall. The ladder begins to move such that the bottom end moves away from the wall at a const

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd